Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Ann Bot ; 133(4): 521-532, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334466

RESUMO

BACKGROUND AND AIMS: Xylella fastidiosa (Xf) is the xylem-dwelling bacterium associated with Pierce's disease (PD), which causes mortality in agriculturally important species, such as grapevine (Vitis vinifera). The development of PD symptoms in grapevines depends on the ability of Xf to produce cell-wall-degrading enzymes to break up intervessel pit membranes and systematically spread through the xylem vessel network. Our objective here was to investigate whether PD resistance could be mechanistically linked to xylem vessel network local connectivity. METHODS: We used high-resolution X-ray micro-computed tomography (microCT) imaging to identify and describe the type, area and spatial distribution of intervessel connections for six different grapevine genotypes from three genetic backgrounds, with varying resistance to PD (four PD resistant and two PD susceptible). KEY RESULTS: Our results suggest that PD resistance is unlikely to derive from local xylem network connectivity. The intervessel pit area (Ai) varied from 0.07 ±â€…0.01 mm2 mm-3 in Lenoir to 0.17 ±â€…0.03 mm2 mm-3 in Blanc do Bois, both PD resistant. Intervessel contact fraction (Cp) was not statically significant, but the two PD-susceptible genotypes, Syrah (0.056 ±â€…0.015) and Chardonnay (0.041 ±â€…0.013), were among the most highly connected vessel networks. Neither Ai nor Cp explained differences in PD resistance among the six genotypes. Bayesian re-analysis of our data shows moderate evidence against the effects of the traits analysed: Ai (BF01 = 4.88), mean vessel density (4.86), relay diameter (4.30), relay density (3.31) and solitary vessel proportion (3.19). CONCLUSIONS: Our results show that radial and tangential xylem network connectivity is highly conserved within the six different Vitis genotypes we sampled. The way that Xf traverses the vessel network may limit the importance of local network properties to its spread and may confer greater importance on host biochemical responses.


Assuntos
Doenças das Plantas , Vitis , Xylella , Xilema , Vitis/microbiologia , Vitis/fisiologia , Xilema/fisiologia , Xilema/microbiologia , Xylella/fisiologia , Doenças das Plantas/microbiologia , Microtomografia por Raio-X , Resistência à Doença , Genótipo
2.
Chem Pharm Bull (Tokyo) ; 71(9): 678-686, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357388

RESUMO

Pirfenidone (PRF) is an anti-fibrotic agent that has been approved by the Food and Drug Administration (FDA) for the treatment of mild to moderate idiopathic pulmonary fibrosis. However, the current oral administration dosing regimen of PRF is complex and requires high doses. Patients are instructed to take PRF three times daily, with each dose consisting of up to three capsules or tablets (600 mg/d or 1.8 g/d of PRF) taken with food. To improve the dosing regimen, efforts are being made to develop an extended-release tablet with a zero-order release pattern. In this study, two types of extended-release matrix tablets were compared: non-channeled extended-release matrix tablets (NChMT) and channeled extended-release matrix tablets (ChMT). In vitro release tests, swelling and erosion index, rheology studies, and X-ray microcomputed tomography (XRCT), were conducted. The results indicated that ChMT maintained a zero-order release pattern with a constant release rate, while NChMT exhibited a decreased release rate in the latter half of the dissolution. ChMT exhibited accelerated swelling and erosion compared to other formulations, and this was made possible by the presence of channels within the tablet. These channels allowed for thorough wetting and swelling throughout the entire depth of the tablet. The formation of channels was confirmed through XRCT images. In conclusion, the presence of channels in ChMT tablets increased the rate of swelling and erosion, resulting in a zero-order release pattern. This development offers the potential to improve the dosage of PRF and reduce its associated side effects.


Assuntos
Preparações de Ação Retardada , Humanos , Microtomografia por Raio-X , Comprimidos , Solubilidade
3.
Plant Cell Environ ; 45(5): 1362-1381, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35141930

RESUMO

Leaves balance CO2 and radiative absorption while maintaining water transport to maximise photosynthesis. Related species with contrasting leaf anatomy can provide insights into inherent and stress-induced links between structure and function for commonly measured leaf traits for important crops. We used two walnut species with contrasting mesophyll anatomy to evaluate these integrated exchange processes under non-stressed and drought conditions using a combination of light microscopy, X-ray microCT, gas exchange, hydraulic conductance, and chlorophyll distribution profiles through leaves. Juglans regia had thicker palisade mesophyll, higher fluorescence in the palisade, and greater low-mesophyll porosity that were associated with greater gas-phase diffusion (gIAS ), stomatal and mesophyll (gm ) conductances and carboxylation capacity. More and highly-packed mesophyll cells and bundle sheath extensions (BSEs) in Juglans microcarpa led to higher fluorescence in the spongy and in proximity to the BSEs. Both species exhibited drought-induced reductions in mesophyll cell volume, yet the associated increases in porosity and gIAS were obscured by declines in biochemical activity that decreased gm . Inherent differences in leaf anatomy between the species were linked to differences in gas exchange, light absorption and photosynthetic capacity, and drought-induced changes in leaf structure impacted performance via imposing species-specific limitations to light absorption, gas exchange and hydraulics.


Assuntos
Dióxido de Carbono , Dessecação , Células do Mesofilo , Fotossíntese , Folhas de Planta/anatomia & histologia
4.
Environ Sci Technol ; 56(1): 282-292, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34881883

RESUMO

Understanding the dynamics of immiscible fluid in a porous media is critical in many chemical and environmental engineering processes. However, the geological heterogeneity effect on multiphase flow behavior remains unclear. Here, the dynamics of immiscible fluid displacement and entrapment were experimentally demonstrated at pore-level using time-lapse synchrotron X-ray microtomography. A drainage-imbibition experiment was designed using an unconsolidated layered sand pack that comprised coarse sand and fine sand zones. There were significant differences between the two zones, with regard to the temporal variations in fluid saturation and morphological evolution of nonwetting fluid (oil) during imbibition. Highly connected oil clusters in the coarse zone broke up into many small fragments, whereas the cluster in the fine zone remained connected while spanning multiple pores. To further understand the impacts of pore size and connectivity on multiphase fluid dynamics, a new approach that tracks the temporal variation of immiscible fluid in individual pores was conducted. The surface area at the oil-water interface increased during imbibition, which is expected to facilitate mass transfer and surface interactions. Understanding immiscible fluid displacement in layered porous media at the pore-level could lead to more effective environmental remediation.


Assuntos
Recuperação e Remediação Ambiental , Síncrotrons , Geologia , Porosidade , Microtomografia por Raio-X
5.
New Phytol ; 229(2): 820-830, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890423

RESUMO

In drought-stressed plants a coordinated cascade of chemical and transcriptional adjustments occurs at the same time as embolism formation. While these processes do not affect embolism formation during stress, they may prime stems for recovery during rehydration by modifying apoplast pH and increasing sugar concentration in the xylem sap. Here we show that in vivo treatments modifying apoplastic pH (stem infiltration with a pH buffer) or reducing stem metabolic activity (infiltration with sodium vanadate and sodium cyanide; plant exposure to carbon monoxide) can reduce sugar accumulation, thus disrupting or delaying the recovery process. Application of the vanadate treatment (NaVO3, an inhibitor of many ATPases) completely halted recovery from drought-induced embolism for up to 24 h after re-irrigation, while partial recovery was observed in vivo in control plants using X-ray microcomputed tomography. Our results suggest that stem hydraulic recovery in poplar is a biological, energy-dependent process that coincides with accumulation of sugars in the apoplast during stress. Recovery and damage are spatially coordinated, with embolism formation occurring from the inside out and refilling from the outside in. The outside-in pattern highlights the importance of xylem proximity to the sugars within the phloem to the embolism recovery process.


Assuntos
Secas , Embolia , Caules de Planta , Água , Microtomografia por Raio-X , Xilema
6.
Biotechnol Bioeng ; 118(2): 930-943, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169831

RESUMO

Filamentous fungal cell factories play a pivotal role in biotechnology and circular economy. Hyphal growth and macroscopic morphology are critical for product titers; however, these are difficult to control and predict. Usually pellets, which are dense networks of branched hyphae, are formed during industrial cultivations. They are nutrient- and oxygen-depleted in their core due to limited diffusive mass transport, which compromises productivity of bioprocesses. Here, we demonstrate that a generalized law for diffusive mass transport exists for filamentous fungal pellets. Diffusion computations were conducted based on three-dimensional X-ray microtomography measurements of 66 pellets originating from four industrially exploited filamentous fungi and based on 3125 Monte Carlo simulated pellets. Our data show that the diffusion hindrance factor follows a scaling law with respect to the solid hyphal fraction. This law can be harnessed to predict diffusion of nutrients, oxygen, and secreted metabolites in any filamentous pellets and will thus advance the rational design of pellet morphologies on genetic and process levels.


Assuntos
Fungos/crescimento & desenvolvimento , Hifas/crescimento & desenvolvimento , Modelos Biológicos , Transporte Biológico Ativo
7.
Plant J ; 99(1): 98-111, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30868647

RESUMO

Wheat and barley are two of the founder crops domesticated in the Fertile Crescent, and currently represent crops of major economic importance in temperate regions. Due to impacts on yield, quality and end-use, grain morphometric traits remain an important goal for modern breeding programmes and are believed to have been selected for by human populations. To directly and accurately assess the three-dimensional (3D) characteristics of grains, we combine X-ray microcomputed tomography (µCT) imaging techniques with bespoke image analysis tools and mathematical modelling to investigate how grain size and shape vary across wild and domesticated wheat and barley. We find that grain depth and, to a lesser extent, width are major drivers of shape change and that these traits are still relatively plastic in modern bread wheat varieties. Significant changes in grain depth are also observed to be associated with differences in ploidy. Finally, we present a model that can accurately predict the wild or domesticated status of a grain from a given taxa based on the relationship between three morphometric parameters (length, width and depth) and suggest its general applicability to both archaeological identification studies and breeding programmes.


Assuntos
Grão Comestível/metabolismo , Produtos Agrícolas/metabolismo , Domesticação , Hordeum/metabolismo , Ploidias , Análise de Componente Principal , Triticum/metabolismo , Microtomografia por Raio-X
8.
J Prosthodont ; 29(1): 87-93, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31702087

RESUMO

PURPOSE: To compare the internal fit and marginal discrepancy of acrylic resin interim crowns fabricated by different manufacturing methods, and to test the consistency of measuring marginal discrepancy and internal fit between different measuring techniques. MATERIALS AND METHODS: A dentoform mandibular left first molar was prepared for an all-ceramic crown. Thirty-six interim crowns were fabricated and divided into three groups (n = 12): group BAC (Bis-acrylic composite, fabricated manually), group CAM (CAD/CAM polymethylmethacrylate resin, milled), and group 3DP (3D printed methacrylic oligomers, printed). The internal fit of the interim crowns was evaluated by the silicone replica technique and by X-ray microcomputed tomography (µCT) technique. The marginal discrepancy of the interim crowns was evaluated by the vinyl polysiloxane (VPS) (Aquasil Ultra XLV) impression technique and by optical coherence tomography (OCT) technique. Data were statistically analyzed using ANOVA and Turkey tests at α = 0.05. Pearson correlation test was used to evaluate the correlation between the different measurement techniques and marginal discrepancy/internal fit. RESULTS: The manually fabricated interim crowns (group BAC) had significantly greater discrepancy of internal fit than did the digitally fabricated crowns (group CAM and group 3DP) measured by both silicone replica technique and µCT 2-dimensional (2D) image measurement. There were no statistically significant differences in the cement space volume values obtained by the µCT image technique between group BAC and group 3DP (p = 0.285). The coefficient of determination between the two volumetric measurement techniques was low (R2 = 0.30). For marginal discrepancy, the manually fabricated interim crowns had a wider absolute marginal discrepancy than both digitally fabricated groups (p < 0.05). In both the VPS impression and OCT assessment, there was no statistically significant difference between group CAM and group 3DP (p = 0.798 and 0.994, respectively). The coefficient of determination between the VPS impression and OCT techniques for marginal discrepancy measurement was low (R2 = 0.23). CONCLUSIONS: Digitally fabricated interim crowns (group CAM and group 3DP) had better internal fit and smaller marginal discrepancy than manually fabricated interim crowns (group BAC). For comparison of the different evaluation techniques, the silicone replica technique and µCT measurements had low correlation for internal fit assessment, as did the PVS impression and OCT techniques for marginal discrepancy test.


Assuntos
Adaptação Marginal Dentária , Planejamento de Prótese Dentária , Desenho Assistido por Computador , Coroas , Porcelana Dentária , Turquia , Microtomografia por Raio-X
9.
Biotechnol Bioeng ; 116(12): 3360-3371, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31508806

RESUMO

Filamentous fungi are exploited as cell factories in biotechnology for the production of proteins, organic acids, and natural products. Hereby, fungal macromorphologies adopted during submerged cultivations in bioreactors strongly impact the productivity. In particular, fungal pellets are known to limit the diffusivity of oxygen, substrates, and products. To investigate the spatial distribution of substances inside fungal pellets, the diffusive mass transport must be locally resolved. In this study, we present a new approach to obtain the effective diffusivity in a fungal pellet based on its three-dimensional morphology. Freeze-dried Aspergillus niger pellets were studied by X-ray microcomputed tomography, and the results were reconstructed to obtain three-dimensional images. After processing these images, representative cubes of the pellets were subjected to diffusion computations. The effective diffusion factor and the tortuosity of each cube were calculated using the software GeoDict. Afterwards, the effective diffusion factor was correlated with the amount of hyphal material inside the cubes (hyphal fraction). The obtained correlation between the effective diffusion factor and hyphal fraction shows a large deviation from the correlations reported in the literature so far, giving new and more accurate insights. This knowledge can be used for morphological optimization of filamentous pellets to increase the yield of biotechnological processes.


Assuntos
Aspergillus niger , Reatores Biológicos , Microtomografia por Raio-X , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/ultraestrutura
10.
J Microsc ; 276(2): 63-81, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31587277

RESUMO

There exists a strong motivation to increase the spatial resolution of magnetic resonance imaging (MRI) acquisitions so that MRI can be used as a microscopy technique in the study of porous materials. This work introduces a method for identifying novel data sampling patterns to achieve undersampling schemes for compressed sensing MRI (CS-MRI) acquisitions, enabling 3D spatial resolutions of 17.6 µm to be achieved. A data-driven learning approach is used to derive k-space undersampling schemes for 3D MRI acquisitions from 3D X-ray microcomputed tomography (µCT) datasets acquired at a higher spatial resolution than can be acquired using MRI. The performance of the new sampling approach was compared to other, well-established sampling strategies using simulated MRI data obtained from high-resolution µCT images of rock core plugs. These simulations were performed for a range of different k-space sampling fractions (0.125-0.375) using images of Ketton limestone. The method was then extended to consideration of imaging Estaillades limestone and Fontainebleau sandstone. The results show that the new sampling approach performs as well as or better than conventional variable density sampling and without need for time-consuming parameter optimisation. Further, a bespoke sampling pattern is produced for each rock type. The novel undersampling strategy was employed to acquire 3D magnetic resonance images of a Ketton limestone rock at spatial resolutions of 35 and 17.6 µm. The ability of the k-space sampling scheme produced using the new approach in enabling reconstruction of the pore space characteristics of the rock was then demonstrated by benchmarking against the pore space statistics obtained from high-resolution µCT data. The MRI data acquired at 17.6 µm resolution gave excellent agreement with the pore size distribution obtained from the X-ray microcomputed tomography dataset, while the pore coordination number distribution obtained from the MRI data was slightly skewed to lower coordination numbers. This approach provides a method of producing a k-space undersampling pattern for MRI acquisition at a spatial resolution for which a fully sampled acquisition at that spatial resolution would be impractically long. The approach can be easily extended to other CS-MRI techniques, such as spatially resolved flow and relaxation time mapping. LAY DESCRIPTION: Magnetic resonance imaging (MRI) is widely used to study the microstructure of, and fluid transport phenomena in porous media relevant for engineering applications. A major application is the study of water and hydrocarbon transport in porous sedimentary rocks, which typically have pore sizes smaller than 100 µm. The spatial resolution of routine MRI acquisitions, however, is limited to several hundred µm due to the relatively low sensitivity of the magnetic resonance method. Therefore, there exists a strong motivation to increase the spatial resolution of MRI by one to two orders of magnitude to be able to study these rocks at a pore scale. This work reports the initial step towards achieving this. Three-dimensional images of rock pore structure are acquired at both 35 and 17.6 µm spatial resolution. In ongoing work, these methods are now being incorporated into magnetic resonance velocity imaging methods, thereby enabling imaging of both pore structure and hydrodynamics at these much higher spatial resolutions than were hitherto possible. Although X-ray microcomputed tomography (µCT) produces high spatial resolution images, it is far more limited in being able to spatially map transport processes (i.e. flow) in porous media. This work reports a strategy for accelerating the image acquisition time such that sufficient signal-to-noise ratio (SNR) is achieved to increase the spatial resolution, that is, the voxel size within which there is sufficient SNR within the resulting image. To achieve this, a technique known as compressed sensing is used which exploits undersampling of the acquired data relative to the standard fully sampled image. In MRI, data are acquired in so-called k-space and Fourier transformed to yield the real space image. The challenge, when undersampling, is to optimise the specific points in k-space that are acquired because these will influence the quality of the resulting image. This work reports a straightforward, robust strategy for identifying the optimal sets of k-space points to acquire. The method introduced uses simulated MRI images calculated from high-resolution µCT images of the rocks of interest, from which optimised MRI sampling patterns are obtained. The method does not require any optimisation of parameters for its implementation, which is a significant advantage compared to other strategies. Moreover, we show that the pore space characteristics of the acquired MRI images are in excellent agreement with the same characteristics obtained from a high-resolution µCT image.

11.
Am J Bot ; 105(1): 95-107, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29532926

RESUMO

PREMISE OF THE STUDY: Fossils provide minimum age estimates for extant lineages. Here we critically evaluate Cantisolanum daturoides Reid & Chandler and two other early putative seed fossils of Solanaceae, an economically important plant family in the Asteridae. METHODS: Three earliest seed fossil taxa of Solanaceae from the London Clay Formation (Cantisolanum daturoides) and the Poole and Branksome Sand Formations (Solanum arnense Chandler and Solanispermum reniforme Chandler) were studied using x-ray microcomputed tomography (MCT) and scanning electron microscopy (SEM). KEY RESULTS: The MCT scans of Cantisolanum daturoides revealed a high level of pyrite preservation at the cellular level. Cantisolanum daturoides can be clearly excluded from Solanaceae and has more affinities to the commelinid monocots based on a straight longitudinal axis, a prominent single layer of relatively thin-walled cells in the testa, and a clearly differentiated micropyle surrounded by radially elongated and inwardly curved testal cells. While the MCT scans show no internal preservation in Solanum arnense and Solanispermum reniforme, SEM images show the presence of several characteristics that allow the placement of these taxa at the stem node of Solanaceae. CONCLUSIONS: Cantisolanum daturoides is likely a member of commelinid monocots and not Solanaceae as previously suggested. The earliest fossil record of Solanaceae is revised to consist of fruit fossil with inflated calyces from the early Eocene of Patagonia (52 Ma) and fossilized seeds from the early to mid-Eocene of Europe (48-46 Ma). The new identity for Cantisolanum daturoides does not alter a late Cretaceous minimum age for commelinids.


Assuntos
Fósseis , Solanaceae/classificação , Evolução Biológica , Inglaterra , Fósseis/anatomia & histologia , Magnoliopsida/anatomia & histologia , Magnoliopsida/classificação , Magnoliopsida/ultraestrutura , Microscopia Eletrônica de Varredura , Filogenia , Solanaceae/anatomia & histologia , Solanaceae/ultraestrutura , Microtomografia por Raio-X
12.
New Phytol ; 215(4): 1609-1622, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28691233

RESUMO

The mesophyll surface area exposed to intercellular air space per leaf area (Sm ) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, leading to potential differences between the estimated and actual cell surface area. Here, we examined how 2D methods used for estimating Sm compare with 3D values obtained from high-resolution X-ray microcomputed tomography (microCT) for 23 plant species, with broad phylogenetic and anatomical coverage. Relative to 3D, uncorrected 2D Sm estimates were, on average, 15-30% lower. Two of the four 2D Sm methods typically fell within 10% of 3D values. For most species, only a few 2D slices were needed to accurately estimate Sm within 10% of the whole leaf sample median. However, leaves with reticulate vein networks required more sections because of a more heterogeneous vein coverage across slices. These results provide the first comparison of the accuracy of 2D methods in estimating the complex 3D geometry of internal leaf surfaces. Because microCT is not readily available, we provide guidance for using standard light microscopy techniques, as well as recommending standardization of reporting Sm values.


Assuntos
Bromeliaceae/anatomia & histologia , Imageamento Tridimensional , Células do Mesofilo/metabolismo , Bromeliaceae/fisiologia , Propriedades de Superfície , Microtomografia por Raio-X
13.
Haemophilia ; 23(1): 152-162, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27611596

RESUMO

INTRODUCTION: A major complication of haemophilia is haemophilic arthropathy (HA), a debilitating disorder with an incompletely defined pathobiology. High-resolution imaging may provide new knowledge about onset and progression of HA, and thereby support identification of new treatment opportunities. Recently, a F8-/- rat model of HA was developed. The size of the rat allows for convenient and high resolution imaging of the joints, which could enable in vivo studies of HA development. AIM: To determine whether HA in the F8-/- rat can be visualized using ultrasonography (US) and micro-computed tomography (µCT). METHODS: Sixty F8-/- and 20 wild-type rats were subjected to a single or two induced knee bleeds. F8-/- rats were treated with either recombinant human FVIII (rhFVIII) or vehicle before the induction of knee bleeds. Haemophilic arthropathy was visualized using in vivo US and ex vivo µCT, and the observations correlated with histological evaluation. RESULTS: US and µCT detected pathologies in the knee related to HA. There was a strong correlation between disease severity determined by µCT and histopathology. rhFVIII treatment reduced the pathology identified with both imaging techniques. CONCLUSION: US and µCT are suitable imaging techniques for detection of blood-induced joint disease in F8-/- rats and may be used for longitudinal studies of disease progression.


Assuntos
Hemofilia A/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Humanos , Ratos , Microtomografia por Raio-X
14.
Artigo em Inglês | MEDLINE | ID: mdl-26780177

RESUMO

Scent detection in an aquatic environment is dependent on the movement of water. We set out to determine the mechanisms for moving water through the olfactory organ of guitarfishes (Rhinobatidae, Chondrichthyes) with open nasal cavities. We found at least two. In the first mechanism, which we identified by observing dye movement in the nasal region of a life-sized physical model of the head of Rhinobatos lentiginosus mounted in a flume, olfactory flow is generated by the guitarfish's motion relative to water, e.g. when it swims. We suggest that the pressure difference responsible for motion-driven olfactory flow is caused by the guitarfish's nasal flaps, which create a region of high pressure at the incurrent nostril, and a region of low pressure in and behind the nasal cavity. Vortical structures in the nasal region associated with motion-driven flow may encourage passage of water through the nasal cavity and its sensory channels, and may also reduce the cost of swimming. The arrangement of vortical structures is reminiscent of aircraft wing vortices. In the second mechanism, which we identified by observing dye movement in the nasal regions of living specimens of Glaucostegus typus, the guitarfish's respiratory pump draws flow through the olfactory organ in a rhythmic (0.5-2 Hz), but continuous, fashion. Consequently, the respiratory pump will maintain olfactory flow whether the guitarfish is swimming or at rest. Based on our results, we propose a model for olfactory flow in guitarfishes with open nasal cavities, and suggest other neoselachians which this model might apply to.


Assuntos
Peixes/fisiologia , Cavidade Nasal/fisiologia , Olfato/fisiologia , Animais , Peixes/metabolismo , Cavidade Nasal/metabolismo , Respiração , Natação/fisiologia , Água/metabolismo
15.
Water Resour Res ; 50(12): 9162-9176, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25745271

RESUMO

With recent advances at X-ray microcomputed tomography (µCT) synchrotron beam lines, it is now possible to study pore-scale flow in porous rock under dynamic flow conditions. The collection of four-dimensional data allows for the direct 3-D visualization of fluid-fluid displacement in porous rock as a function of time. However, even state-of-the-art fast-µCT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3-D volume. We present an approach to analyze the 2-D radiograph data collected during fast-µCT to study the pore-scale displacement dynamics on the time scale of 40 ms which is near the intrinsic time scale of individual Haines jumps. We present a methodology to identify the time intervals at which pore-scale displacement events in the observed field of view occur and hence, how reconstruction intervals can be chosen to avoid fluid-movement-induced reconstruction artifacts. We further quantify the size, order, frequency, and location of fluid-fluid displacement at the millisecond time scale. We observe that after a displacement event, the pore-scale fluid distribution relaxes to (quasi-) equilibrium in cascades of pore-scale fluid rearrangements with an average relaxation time for the whole cascade between 0.5 and 2.0 s. These findings help to identify the flow regimes and intrinsic time and length scales relevant to fractional flow. While the focus of the work is in the context of multiphase flow, the approach could be applied to many different µCT applications where morphological changes occur at a time scale less than that required for collecting a µCT scan.

16.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38543116

RESUMO

This study aimed to evaluate the ejection pressure and the correlation of the findings with the occurrence of internal cracks within bilayer tablets (BLTs) consisting of metformin HCl (MF) and evogliptin tartrate (EG). Then, the mechanism of tablet failure was provided by the finite element method (FEM). The ejection pressure and the difference in diameter depending on MAIN-P were evaluated to understand the correlation between ejection pressure and change in the BLT internal structure. The ejection pressure and the difference in diameter increased as the MAIN-P increased, then steeply decreased from 350 MPa to 375 MPa of MAIN-P, despite there being no pattern in compaction breaking force and porosity. The mechanical integrity at the BLT interface was weakened by internal cracks, reducing ejection pressure. The stress distribution analysis during the compression revealed that crack formation caused by entrapped air located at the center of the BLT interface may not propagate due to concentrated stress, which promotes a tight bond at the edge of the BLT. Furthermore, complete delamination can occur in the ejection process due to localized and intensive shear stresses at the BLT interface. These findings indicate that the mechanisms of internal cracking and delamination were successfully confirmed by FEM simulation. Moreover, measuring ejection pressure before BLT manufacturing can prevent invisible tablet cracks without damaging the tablets.

17.
Eur J Pharm Sci ; 192: 106619, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866675

RESUMO

This study investigates the influence of drug load and polymer molecular weight on the structure of tablets three-dimensionally (3D) printed from the binary mixture of prednisolone and hydroxypropyl methylcellulose (HPMC). Three different HPMC grades, (AFFINISOLTM HPMC HME 15LV, 90 Da (HPMC 15LV); 100LV, 180 Da (HPMC 100LV); 4M, 500 Da (HPMC 4M)), which are suitable for hot-melt extrusion (HME), were used in this study. HME was used to fabricate feedstock material, i.e., filaments, at the lowest possible extrusion temperature. Filaments of the three HPMC grades were prepared to contain 2.5, 5, 10 and 20 % (w/w) prednisolone. The thermal degradation of the filaments was studied with thermogravimetric analysis, while solid-state properties of the drug-loaded filaments were assessed with the use of X-ray powder diffraction. Prednisolone in the freshly extruded filaments was determined to be amorphous for drug loads up to 10%. It remained physically stable for at least 6 months of storage, except for the filament containing 10% drug with HPMC 15LV, where recrystallization of prednisolone was detected. Fused deposition modeling was utilized to print honeycomb-shaped tablets from the HME filaments of HPMC 15LV and 100LV. The structural characteristics of the tablets were evaluated using X-ray microcomputed tomography, specifically porosity and size of structural elements were investigated. The tablets printed from HPMC 15LV possessed in general lower total porosity and pores of smaller size than tablets printed from the HPMC 100LV. The studied drug loads were shown to have minor effect on the total porosity of the tablets, though the lower the drug load was, the higher the variance of porosity along the height of the tablet was observed. It was found that tablets printed with HPMC 15LV showed higher structural similarity with the virtually designed model than tablets printed from HPMC 100LV. These findings highlight the relevance of the drug load and polymer molecular weight on the microstructure and structural properties of 3D printed tablets.


Assuntos
Polímeros , Prednisolona , Polímeros/química , Peso Molecular , Microtomografia por Raio-X , Comprimidos/química , Liberação Controlada de Fármacos , Impressão Tridimensional , Tecnologia Farmacêutica/métodos
18.
Materials (Basel) ; 16(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37512358

RESUMO

Plasterboard is an important building material in the construction industry because it allows for quick installation of walls, partitions, and ceilings. Although a common material, knowledge about its performance related to modern polymers and fabrication conditions is still lacking. The present work analyzes how some manufacturing factors applied during the plaster board fabrication impact on some plasterboard properties, including water absorption, flexural strength, and thermal conductivity. The manufacturing variables evaluated are the dose (D) of polymethylhydrosiloxane (PMHS), the agitation time of the mixture (H), and the drying temperature of the plaster boards after setting (T). The results suggest that factors D, H, and T induce changes in the porosity and the morphological structure of the calcium sulfate dihydrate crystals formed. Performance is evaluated at two levels of each factor following a statistical method of factorial experimental design centered on a cube. Morphological changes in the crystals of the resulting boards were evaluated with scanning electron microscopy (SEM) and the IMAGEJ image analysis program. Porosity changes were evaluated with X-ray microcomputed tomography (XMT) and 3D image analysis tools. The length-to-width ratio of the crystals decreases as it goes from low PMHS dosage to high dosage, favoring a better compaction of the plasterboard under the right stirring time and drying temperature. In contrast, the porosity generated by the incorporation of PMHS increases when going from low-level to high-level conditions and affects the maximum size of the pores being generated, with a maximum value achieved at 0.6% dosage, 40 s, and 140 °C conditions. The presence of an optimal PMHS dosage value that is approximately 0.6-1.0% is evidenced. In fact, when comparing trails without and with PMHS addition, a 10% decrease in thermal conductivity is achieved at high H (60 s) and high T (150 °C) level conditions. Water absorption decreases by more than 90% when PMHS is added, mainly due to the hydrophobic action of the PMHS. Minimum water absorption levels can be obtained at high drying temperatures. Finally, the resistance to flexion is not affected by the addition of PMHS because apparently there are two opposing forces acting: on one hand is the decrease in the length-width ratio giving more compactness, and on the other hand is the generation of pores. The maximum resistance to flexion was found around a dosage of 0.6% PMHS. In conclusion, the results suggest that the addition of PMHS, the correct agitation time of the mixture, and the drying temperature reduce the water absorption and the thermal conductivity of the gypsum boards, with no significant changes in the flexural resistance.

19.
Environ Sci Pollut Res Int ; 29(37): 55743-55756, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35322361

RESUMO

It has recently been shown that pervious concrete is a promising, effective technology as a permeable reactive barrier system for treatment of acid mine drainage (AMD). However, pore clogging also occurs simultaneously during AMD treatment. In the present study, mixtures of pervious concrete were made and used in a column experiment during which pore clogging occurred in the samples. Pore volume, connectivity and other parameters of pervious concrete were evaluated using five (5) different methods comprising the volumetric method (VM), linear-traverse method (LTM), image analysis (IA), falling head permeability test and X-ray microcomputed tomography. It was found that pervious concrete effectively removed from AMD, about 90 to 99% of various heavy metals including Al, Fe, Zn, Mn and Mg. Cr concentration significantly increased in the treated effluent, owing to leaching from cementitious materials used in mixtures. The VM and LTM gave statistically similar pore volume results, while IA's values were 20 to 30% higher than those of the conventional methods. The falling head permeability test and IA were found to be effective in quantifying pore clogging effects. Pervious concrete exhibited high pore connectivity of 95.0 to 99.7%, which underlies its efficacious hydraulic conductivity.


Assuntos
Materiais de Construção , Metais Pesados , Materiais de Construção/análise , Permeabilidade , Microtomografia por Raio-X
20.
Micron ; 161: 103342, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963207

RESUMO

As a critically endangered (CR) fish species, Chinese Bahaba is a unique "Giant Panda" fish species in China and has been listed among the national first-class wildlife protection animals and China's top 10 genetic resources of aquatic products since 2021. This fish species is of high commercial value because its swim bladder is commonly used in traditional Chinese medicine. Its otoliths are the sensory organs immersed in the endolymph for maintaining its balance and hearing. However, rare information has been reported on the sound absorption structure and chambers of otoliths of such "Giant Panda" fish. The big "C" groove was found in the fish's front sagittal otolith with the crystal cluster in the back sagittal otolith, the former of which is a 3D layered structure, that is constructed by elongated prismatic crystals. Besides, there are numerous small holes and adhesion material in this 3D layered structure, where many chambers were also found, indicating that some specific sounds may be captured by this structure and these chambers may then amplify such sounds at a certain wavelength. This finding could be of great importance for protecting and conserving this critically endangered species.


Assuntos
Membrana dos Otólitos , Ursidae , Animais , Microtomografia por Raio-X , Peixes , Audição
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa