Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208677

RESUMO

Poly(L-lactic acid) (PLLA) has been used as a biodegradable vascular scaffold (BVS) material due to high mechanical property, biodegradability, and biocompatibility. However, acidic byproducts from hydrolysis of PLLA reduce the pH after the surrounding implanted area and cause inflammatory responses. As a result, severe inflammation, thrombosis, and in-stent restenosis can occur after implantation by using BVS. Additionally, polymers such as PLLA could not find on X-ray computed tomography (CT) because of low radiopacity. To this end, here, we fabricated PLLA films as the surface of BVS and divided PLLA films into two coating layers. At the first layer, PLLA film was coated by 2,3,5-triiodobenzoic acid (TIBA) and magnesium hydroxide (MH) with poly(D,L-lactic acid) (PDLLA) for radiopaque and neutralization of acidic environment, respectively. The second layer of coated PLLA films is composed of polydopamine (PDA) and then cystamine (Cys) for the generation of nitric oxide (NO) release, which is needed for suppression of smooth muscle cells (SMCs) and proliferation of endothelial cells (ECs). The characterization of the film surface was conducted via various analyses. Through the surface modification of PLLA films, they have multifunctional abilities to overcome problems of BVS effectively such as X-ray penetrability, inflammation, thrombosis, and neointimal hyperplasia. These results suggest that the modification of biodegradable PLLA using TIBA, MH, PDA, and Cys will have important potential in implant applications.

2.
J Biomed Mater Res A ; 102(9): 3207-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24151206

RESUMO

An iodinated urethane polymer that does not require addition of X-ray attenuating additives to impart X-ray opacity was synthesized and characterized for biomedical applications. A new X-ray opaque diiodo compound, namely, 2,2'-(2,5-diiodobenzene-1,4-diyl)bis(oxy)diethanol (DBD), was synthesized by iodinating hydroquinone bis(2-hydroxyethyl) ether and this compound was used as chain extender during polyurethane synthesis so that X-ray opacity could be imparted to the polymer formed. X-ray opaque polyurethane (XPU) was synthesized by reacting 1,6-diisocyanatohexane with poly(hexamethylene carbonate)diol and DBD. X-ray opacity of XPU was measured with a fluoroscopy machine using BaSO4 -filled polyurethane as controls. Radiographic images showed that XPU sample had X-ray opacity equivalent to 15 wt % BaSO4-filled polymer. In vivo imaging in a rabbit model showed that the material could be readily distinguishable from bones. XPU was found to be hemocompatible and noncytotoxic to L929 fibroblast cell lines. Optical transparency measurements using ultraviolet-visible spectrophotometer showed that XPU transmitted 85% of visible light.


Assuntos
Materiais Biocompatíveis/química , Hidroquinonas/química , Poliuretanos/química , Animais , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Halogenação , Hemólise/efeitos dos fármacos , Humanos , Hidroquinonas/toxicidade , Isocianatos/química , Teste de Materiais , Camundongos , Poliuretanos/toxicidade , Coelhos , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Raios X
3.
ACS Appl Mater Interfaces ; 6(20): 17926-36, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25265599

RESUMO

Radiopaque polymer derivatives were successfully prepared through surface diffusion mediated cross-linking of chitosan with iodinated 2,5-dimethoxy-2,5-dihydrofuran. The incorporation of iodine in 2,5-dimethoxy-2,5-dihydrofuran was validated by (1)H NMR and mass spectroscopy. The cross-linking of the glucosamine moieties of chitosan with the iodinated product was confirmed by (13)C NMR and energy-dispersive X-ray spectroscopy. Radiography analysis proved inherent opacity of the iodinated fibrous sheets and microspheres that were comparable to the X-ray visibility of aluminum hollow rings of equivalent thickness and commercially available radiopaque tape, respectively. Microscopic studies evidenced retention of the fiber/microsphere morphology after the iodination/cross-linking reactions. The effects of iodination/cross-linking on the mechanical and biodegradation properties of fibers were studied by nanoindentation and enzymatic assay, respectively. In vitro and in vivo studies established the nontoxic, biodegradable nature of radiopaque derivatives. Iodinated fiber mesh implanted in a rabbit model was significantly X-ray opaque compared to the uncross-linked fiber mesh and medical grade surgical swabs. Further, opacity of the iodinated mesh was evident even after 60 days, though the intensity was reduced, which indicates the biodegradable nature of the iodinated polymer. The opacity of the iodinated sutures was also established in the computed tomography images. Finally, the sufficient in vivo contrast property of the radiopaque microspheres in the gastrointestinal tract indicates its possible role in clinical diagnostics.


Assuntos
Aldeídos/síntese química , Quitosana/química , Reagentes de Ligações Cruzadas/química , Diagnóstico por Imagem/métodos , Furanos/síntese química , Halogenação , Administração Oral , Aldeídos/química , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Morte Celular/efeitos dos fármacos , Linhagem Celular , Meios de Contraste , Furanos/química , Humanos , Masculino , Microesferas , Implantação de Prótese , Espectroscopia de Prótons por Ressonância Magnética , Coelhos , Ratos , Reologia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa