Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2302281120, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276419

RESUMO

Relaxation dynamics, as a key to understand glass formation and glassy properties, remains an elusive and challenging issue in condensed matter physics. In this work, in situ high-pressure synchrotron high-energy X-ray photon correlation spectroscopy has been developed to probe the atomic-scale relaxation dynamics of a cerium-based metallic glass during compression. Although the sample density continuously increases, the collective atomic motion initially slows down as generally expected and then counterintuitively accelerates with further compression (density increase), showing an unusual nonmonotonic pressure-induced steady relaxation dynamics cross-over at ~3 GPa. Furthermore, by combining in situ high-pressure synchrotron X-ray diffraction, the relaxation dynamics anomaly is evidenced to closely correlate with the dramatic changes in local atomic structures during compression, rather than monotonically scaling with either sample density or overall stress level. These findings could provide insight into relaxation dynamics and their relationship with local atomic structures of glasses.

2.
Proc Natl Acad Sci U S A ; 120(18): e2215517120, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094149

RESUMO

We probe the microstructural yielding dynamics of a concentrated colloidal system by performing creep/recovery tests with simultaneous collection of coherent scattering data via X-ray Photon Correlation Spectroscopy (XPCS). This combination of rheology and scattering allows for time-resolved observations of the microstructural dynamics as yielding occurs, which can be linked back to the applied rheological deformation to form structure-property relations. Under sufficiently small applied creep stresses, examination of the correlation in the flow direction reveals that the scattering response recorrelates with its predeformed state, indicating nearly complete microstructural recovery, and the dynamics of the system under these conditions slows considerably. Conversely, larger creep stresses increase the speed of the dynamics under both applied creep and recovery. The data show a strong connection between the microstructural dynamics and the acquisition of unrecoverable strain. By comparing this relationship to that predicted from homogeneous, affine shearing, we find that the yielding transition in concentrated colloidal systems is highly heterogeneous on the microstructural level.

3.
Small ; 20(25): e2309331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213019

RESUMO

The ß-relaxation is one of the major dynamic behaviors in metallic glasses (MGs) and exhibits diverse features. Despite decades of efforts, the understanding of its structural origin and contribution to the overall dynamics of MG systems is still unclear. Here two palladium-based Pd─Cu─P and Pd─Ni─P MGs are reported with distinct different ß-relaxation behaviors and reveal the structural origins for the difference using the advanced X-ray photon correlation spectroscopy and absorption fine structure techniques together with the first-principles calculations. The pronounced ß-relaxation and fast atomic dynamics in the Pd─Cu─P MG mainly come from the strong mobility of Cu atoms and their locally favored structures. In contrast, the motion of Ni atoms is constrained by P atoms in the Pd─Ni─P MG, leading to the weakened ß-relaxation peak and sluggish dynamics. The correlation of atomic dynamics with microscopic structures provides a way to understand the structural origins of different dynamic behaviors as well as the nature of aging in disordered materials.

4.
J Synchrotron Radiat ; 31(Pt 3): 557-565, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656773

RESUMO

Synchrotron-radiation-based techniques are a powerful tool for the investigation of materials. In particular, the availability of highly brilliant sources has opened the possibility to develop techniques sensitive to dynamics at the atomic scale such as X-ray photon correlation spectroscopy (XPCS). XPCS is particularly relevant in the study of glasses, which have been often investigated at the macroscopic scale by, for example, differential scanning calorimetry. Here, we show how to adapt a Flash calorimeter to combine XPCS and calorimetric scans. This setup paves the way to novel experiments requiring dynamical and thermodynamic information, ranging from the study of the crystallization kinetics to the study of the glass transition in systems that can be vitrified thanks to the high cooling rates reachable with an ultrafast calorimeter.

5.
J Synchrotron Radiat ; 31(Pt 3): 517-526, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517755

RESUMO

Physical optics simulations for beamlines and experiments allow users to test experiment feasibility and optimize beamline settings ahead of beam time in order to optimize valuable beam time at synchrotron light sources like NSLS-II. Further, such simulations also help to develop and test experimental data processing methods and software in advance. The Synchrotron Radiation Workshop (SRW) software package supports such complex simulations. We demonstrate how recent developments in SRW significantly improve the efficiency of physical optics simulations, such as end-to-end simulations of time-dependent X-ray photon correlation spectroscopy experiments with partially coherent undulator radiation (UR). The molecular dynamics simulation code LAMMPS was chosen to model the sample: a solution of silica nanoparticles in water at room temperature. Real-space distributions of nanoparticles produced by LAMMPS were imported into SRW and used to simulate scattering patterns of partially coherent hard X-ray UR from such a sample at the detector. The partially coherent UR illuminating the sample can be represented by a set of orthogonal coherent modes obtained by simulation of emission and propagation of this radiation through the coherent hard X-ray (CHX) scattering beamline followed by a coherent-mode decomposition. GPU acceleration is added for several key functions of SRW used in propagation from sample to detector, further improving the speed of the calculations. The accuracy of this simulation is benchmarked by comparison with experimental data.

6.
J Synchrotron Radiat ; 31(Pt 1): 55-64, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930257

RESUMO

X-ray photon correlation spectroscopy (XPCS) holds strong promise for observing atomic-scale dynamics in materials, both at equilibrium and during non-equilibrium transitions. Here an in situ XPCS study of the relaxor ferroelectric PbMg1/3Nb2/3O3 (PMN) is reported. A weak applied AC electric field generates strong response in the speckle of the diffuse scattering from the polar nanodomains, which is captured using the two-time correlation function. Correlated motions of the Bragg peak are also observed, which indicate dynamic tilting of the illuminated volume. This tilting quantitatively accounts for the observed two-time speckle correlations. The magnitude of the tilting would not be expected solely from the modest applied field, since PMN is an electrostrictive material with no linear strain response to the field. A model is developed based on non-uniform static charging of the illuminated surface spot by the incident micrometre-scale X-ray beam and the electrostrictive material response to the combination of static and dynamic fields. The model qualitatively explains the direction and magnitude of the observed tilting, and predicts that X-ray-induced piezoresponse could be an important factor in correctly interpreting results from XPCS and nanodiffraction studies of other insulating materials under applied AC field or varying X-ray illumination.

7.
J Synchrotron Radiat ; 31(Pt 3): 527-539, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597746

RESUMO

A new experimental setup combining X-ray photon correlation spectroscopy (XPCS) in the hard X-ray regime and a high-pressure sample environment has been developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-gigapascal range, from room temperature to 600 K. The high flux of coherent high-energy X-rays at fourth-generation synchrotron sources solves the problems caused by the absorption of diamond anvil cells used to generate high pressure, enabling the measurement of the intermediate scattering function over six orders of magnitude in time, from 10-3 s to 103 s. The constraints posed by the high-pressure generation such as the preservation of X-ray coherence, as well as the sample, pressure and temperature stability, are discussed, and the feasibility of high-pressure XPCS is demonstrated through results obtained on metallic glasses.

8.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34408023

RESUMO

Coefficients for translational and rotational diffusion characterize the Brownian motion of particles. Emerging X-ray photon correlation spectroscopy (XPCS) experiments probe a broad range of length scales and time scales and are well-suited for investigation of Brownian motion. While methods for estimating the translational diffusion coefficients from XPCS are well-developed, there are no algorithms for measuring the rotational diffusion coefficients based on XPCS, even though the required raw data are accessible from such experiments. In this paper, we propose angular-temporal cross-correlation analysis of XPCS data and show that this information can be used to design a numerical algorithm (Multi-Tiered Estimation for Correlation Spectroscopy [MTECS]) for predicting the rotational diffusion coefficient utilizing the cross-correlation: This approach is applicable to other wavelengths beyond this regime. We verify the accuracy of this algorithmic approach across a range of simulated data.

9.
Proc Natl Acad Sci U S A ; 117(39): 24110-24116, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32934145

RESUMO

Dynamics and kinetics in soft matter physics, biology, and nanoscience frequently occur on fast (sub)microsecond but not ultrafast timescales which are difficult to probe experimentally. The European X-ray Free-Electron Laser (European XFEL), a megahertz hard X-ray Free-Electron Laser source, enables such experiments via taking series of diffraction patterns at repetition rates of up to 4.5 MHz. Here, we demonstrate X-ray photon correlation spectroscopy (XPCS) with submicrosecond time resolution of soft matter samples at the European XFEL. We show that the XFEL driven by a superconducting accelerator provides unprecedented beam stability within a pulse train. We performed microsecond sequential XPCS experiments probing equilibrium and nonequilibrium diffusion dynamics in water. We find nonlinear heating on microsecond timescales with dynamics beyond hot Brownian motion and superheated water states persisting up to 100 µs at high fluences. At short times up to 20 µs we observe that the dynamics do not obey the Stokes-Einstein predictions.

10.
Small ; 18(37): e2201324, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905490

RESUMO

X-ray photon correlation spectroscopy (XPCS), a synchrotron source-based technique to measure sample dynamics, is used to determine hydrodynamic diameters of gold nanoparticles (Au NPs) of different sizes in biological environments. In situ determined hydrodynamic diameters are benchmarked with values obtained by dynamic light scattering. The technique is then applied to analyze the behavior of the Au NPs in a biological environment. First, a concentration-dependent agglomeration in the presence of NaCl is determined. Second, concentration-dependent increase in hydrodynamic diameter of the Au NPs upon the presence of proteins is determined. As X-rays in the used energy range are barely scattered by biological matter, dynamics of the Au NPs can be also detected in situ in complex biological environments, such as blood. These measurements demonstrate the possibility of XPCS for in situ analytics of nanoparticles (NPs) in biological environments where similar detection techniques based on visible light would severely suffer from scattering, absorption, and reflection effects.


Assuntos
Ouro , Nanopartículas Metálicas , Difusão Dinâmica da Luz , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral , Raios X
11.
J Synchrotron Radiat ; 29(Pt 4): 1122-1129, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787580

RESUMO

pyXPCSviewer, a Python-based graphical user interface that is deployed at beamline 8-ID-I of the Advanced Photon Source for interactive visualization of XPCS results, is introduced. pyXPCSviewer parses rich X-ray photon correlation spectroscopy (XPCS) results into independent PyQt widgets that are both interactive and easy to maintain. pyXPCSviewer is open-source and is open to customization by the XPCS community for ingestion of diversified data structures and inclusion of novel XPCS techniques, both of which are growing demands particularly with the dawn of near-diffraction-limited synchrotron sources and their dedicated XPCS beamlines.

12.
J Synchrotron Radiat ; 28(Pt 1): 259-265, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399576

RESUMO

The performance of the new 52 kHz frame rate Rigaku XSPA-500k detector was characterized on beamline 8-ID-I at the Advanced Photon Source at Argonne for X-ray photon correlation spectroscopy (XPCS) applications. Due to the large data flow produced by this detector (0.2 PB of data per 24 h of continuous operation), a workflow system was deployed that uses the Advanced Photon Source data-management (DM) system and high-performance software to rapidly reduce area-detector data to multi-tau and two-time correlation functions in near real time, providing human-in-the-loop feedback to experimenters. The utility and performance of the workflow system are demonstrated via its application to a variety of small-angle XPCS measurements acquired from different detectors in different XPCS measurement modalities. The XSPA-500k detector, the software and the DM workflow system allow for the efficient acquisition and reduction of up to ∼109 area-detector data frames per day, facilitating the application of XPCS to measuring samples with weak scattering and fast dynamics.

13.
J Synchrotron Radiat ; 28(Pt 4): 1069-1080, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212870

RESUMO

Detectors with microchannel plates (MCPs) provide unique capabilities to detect single photons with high spatial (<10 µm) and timing (<25 ps) resolution. Although this detection technology was originally developed for applications with low event rates, recent progress in readout electronics has enabled their operation at substantially higher rates by simultaneous detection of multiple particles. In this study, the potential use of MCP detectors with Timepix readout for soft X-ray imaging and spectroscopic applications where the position and time of each photon needs to be recorded is investigated. The proof-of-principle experiments conducted at the Advanced Light Source demonstrate the capabilities of MCP/Timepix detectors to operate at relatively high input counting rates, paving the way for the application of these detectors in resonance inelastic X-ray scattering and X-ray photon correlation spectroscopy (XPCS) applications. Local count rate saturation was investigated for the MCP/Timepix detector, which requires optimization of acquisition parameters for a specific scattering pattern. A single photon cluster analysis algorithm was developed to eliminate the charge spreading effects in the detector and increase the spatial resolution to subpixel values. Results of these experiments will guide the ongoing development of future MCP devices optimized for soft X-ray photon-counting applications, which should enable XPCS dynamics measurements down to sub-microsecond timescales.

14.
Osteoarthritis Cartilage ; 29(9): 1351-1361, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052396

RESUMO

OBJECTIVE: Tissues have complex structures, comprised of solid and fluid phases. Improved understanding of interactions between joint fluid and extracellular matrix (ECM) is required in models of cartilage mechanics. X-ray photon correlation spectroscopy (XPCS) directly measures nanometer-scale dynamics and can provide insight into biofluid-biosolid interactions in cartilage. This study applies XPCS to evaluate dynamic interactions between intact cartilage and biofluids. DESIGN: Cartilage biopsies were collected from bovine femoral condyles. During XPCS measurements, cartilage samples were exposed to different fluids: deionized water, PBS, synovial fluid, or sonicated synovial fluid. ECM-biofluid interactions were also assessed at different length scales and different depths from the cartilage surface. RESULTS: Using XPCS, cartilage ECM mobility was detected at length scales from 50 to 207 nm. As length scale decreased, time scale for autocorrelation decay decreased, suggesting smaller ECM components are more mobile. ECM dynamics were slowed by dehydrating the sample, demonstrating XPCS assesses matrix mobility in hydrated environments. At all length scales, the matrix was more mobile in deionized water and slowest in synovial fluid. Using the 207 nm length scale assessment, ECM dynamics in synovial fluid were fastest at the cartilage surface and progressively slowed as depth into the sample increased, demonstrating XPCS can assess spatial distribution of ECM dynamics. Finally, ECM mobility increased for degraded synovial fluid. CONCLUSIONS: This study demonstrates the potential of XPCS to provide unique insights into nanometer-scale cartilage ECM mobility in a spatially resolved manner and illustrates the importance of biosolid-biofluid interactions in dictating ECM dynamics.


Assuntos
Cartilagem Articular/anatomia & histologia , Cartilagem Articular/fisiologia , Matriz Extracelular , Líquido Sinovial , Animais , Bovinos , Análise Espectral
15.
Proc Natl Acad Sci U S A ; 115(29): E6680-E6689, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29970423

RESUMO

Technologically important properties of ferroic materials are determined by their intricate response to external stimuli. This response is driven by distortions of the crystal structure and/or by domain wall motion. Experimental separation of these two mechanisms is a challenging problem which has not been solved so far. Here, we apply X-ray photon correlation spectroscopy (XPCS) to extract the contribution of domain wall dynamics to the overall response. Furthermore, we show how to distinguish the dynamics related to the passing of domain walls through the periodic (Peierls) potential of the crystal lattice and through the random potential caused by lattice defects (pinning centers). The approach involves the statistical analysis of correlations between X-ray speckle patterns produced by the interference of coherent synchrotron X-rays scattered from different nanosize volumes of the crystal and identification of Poisson-type contribution to the statistics. We find such a contribution in the thermally driven response of the monoclinic phase of a ferroelectric PbZr0.55Ti0.45O3 crystal and calculate the number of domain wall jumps in the studied microvolume.

16.
J Synchrotron Radiat ; 27(Pt 6): 1528-1538, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147178

RESUMO

This paper illustrates the use of spatial filtering with a horizontal slit near the source to enlarge the horizontal coherence in an experimental station and produce a diffraction-limited round focus at an insertion device beamline for X-ray photon correlation spectroscopy experiments. Simple expressions are provided to guide the optical layout, and wave propagation simulations confirm their applicability. The two-dimensional focusing performance of Be compound refractive lenses to produce a round diffraction-limited focus at 11 keV capable of generating a high-contrast speckle pattern of an aerogel sample is demonstrated. The coherent scattering patterns have comparable speckle sizes in both horizontal and vertical directions. The focal spot sizes are consistent with hybrid ray-tracing calculations. Producing a two-dimensional focus on the sample can be helpful to resolve speckle patterns with modern pixel array detectors with high visibility. This scheme has now been in use since 2019 for the 8-ID beamline at the Advanced Photon Source, sharing the undulator beam with two separate beamlines, 8-ID-E and 8-ID-I at 7.35 keV, with increased partially coherent flux, reduced horizontal spot sizes on samples, and good speckle contrast.

17.
Chemphyschem ; 21(12): 1318-1325, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32250508

RESUMO

We study the structure and dynamics of poly(N-isopropylacrylamide) (PNIPAm) core-shell nanogels dispersed in aqueous trimethylamine N-oxide (TMAO) solutions by means of small-angle X-ray scattering and X-ray photon correlation spectroscopy (XPCS). Upon increasing the temperature above the lower critical solution temperature of PNIPAm at 33 °C, a colloidal gel is formed as identified by an increase of I(q) at small q as well as a slowing down of sample dynamics by various orders of magnitude. With increasing TMAO concentration the gelation transition shifts linearly to lower temperatures. Above a TMAO concentration of approximately 0.40 mol/L corresponding to a 1 : 1 ratio of TMAO and NIPAm groups, collapsed PNIPAm states are found for all temperatures without any gelation transition. This suggests that reduction of PNIPAm-water hydrogen bonds due to the presence of TMAO results in a stabilisation of the collapsed PNIPAm state and suppresses gelation of the nanogel.

18.
Proc Natl Acad Sci U S A ; 114(31): 8193-8198, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28652327

RESUMO

Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

19.
J Synchrotron Radiat ; 26(Pt 4): 1052-1057, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274427

RESUMO

A compact hard X-ray split-and-delay line for studying ultrafast dynamics at free-electron laser sources is presented. The device is capable of splitting a single X-ray pulse into two fractions to introduce time delays from -5 to 815 ps with femtosecond resolution. The split-and-delay line can operate in a wide and continuous energy range between 7 and 16 keV. Compact dimensions of 60 × 60 × 30 cm with a total weight of about 60 kg make it portable and suitable for direct installation in an experimental hutch. The concept of the device is based on crystal diffraction. The piezo-driven stages utilized in the device give nanometre positioning accuracy. On-line monitoring systems based on X-ray cameras and intensity monitors are implemented to provide active alignment feedback. Performance estimates of the system are also presented.

20.
J Synchrotron Radiat ; 26(Pt 5): 1705-1715, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490162

RESUMO

This paper reports on coherent scattering experiments in the low-count regime with less than one photon per pixel per acquisition on average, conducted with two detectors based on the Eiger single-photon-counting chip. The obtained photon-count distributions show systematic deviations from the expected Poisson-gamma distribution, which result in a strong overestimation of the measured speckle contrast. It is shown that these deviations originate from an artificial increase of double-photon events, which is proportional to the detected intensity and inversely proportional to the exposure time. The observed miscounting effect may have important implications for new coherent scattering experiments emerging with the advent of high-brilliance X-ray sources. Different correction schemes are discussed in order to obtain the correct photon distributions from the data. A successful correction is demonstrated with the measurement of Brownian motion from colloidal particles using X-ray speckle visibility spectroscopy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa