RESUMO
Previous studies suggest that uric acid or reactive oxygen species, products of xanthine oxidoreductase (XOR), may associate with neurodegenerative diseases. However, neither relationship has ever been firmly established. Here, we analyzed human brain samples, obtained under protocols approved by research ethics committees, and found no expression of XOR and only low levels of uric acid in various regions of the brain. In the absence of XOR, hypoxanthine will be preserved and available for incorporation into the purine salvage pathway. To clarify the importance of salvage in the brain, we tested using human-induced pluripotent stem cell-derived neuronal cells. Stable isotope analyses showed that the purine salvage pathway was more effective for ATP synthesis than purine de novo synthesis. Blood uric acid levels were related to the intracellular adenylate pool (ATP + ADP + AMP), and reduced levels of this pool result in lower uric acid levels. XOR inhibitors are related to extracellular hypoxanthine levels available for uptake into the purine salvage pathway by inhibiting the oxidation of hypoxanthine to xanthine and uric acid in various organs where XOR is present and can prevent further decreases in the intracellular adenylate pool under stress. Furthermore, adding precursors of the pentose phosphate pathway enhanced hypoxanthine uptake, indicating that purine salvage is activated by phosphoribosyl pyrophosphate replenishment. These findings resolve previous contradictions regarding XOR products and provide new insights into clinical studies. It is suggested that therapeutic strategies maximizing maintenance of intracellular adenylate levels may effectively treat pathological conditions associated with ischemia and energy depletion.
Assuntos
Encéfalo , Purinas , Ácido Úrico , Xantina Desidrogenase , Humanos , Purinas/metabolismo , Encéfalo/metabolismo , Xantina Desidrogenase/metabolismo , Ácido Úrico/metabolismo , Hipoxantina/metabolismo , Masculino , Neurônios/metabolismo , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Via de Pentose Fosfato , Pessoa de Meia-Idade , Trifosfato de Adenosina/metabolismo , Idoso , AdultoRESUMO
Autophagy is a highly conserved cellular process that profoundly impacts the efficacy of genotoxic chemotherapeutic drugs. TGF-ß-activated kinase 1 (TAK1) is a serine/threonine kinase that activates several signaling pathways involved in inducing autophagy and suppressing cell death. Xanthine oxidoreductase (XOR) is a rate-limiting enzyme that converts hypoxanthine to xanthine, and xanthine to uric acid and hydrogen peroxide in the purine catabolism pathway. Recent studies showed that uric acid can bind to TAK1 and prolong its activation. We hypothesized that genotoxic drugs may induce autophagy and apoptosis resistance by activating TAK1 through XOR-generated uric acid. Here, we report that gemcitabine and 5-fluorouracil (5-FU), two genotoxic drugs, induced autophagy in HeLa and HT-29 cells by activating TAK1 and its two downstream kinases, AMP-activated kinase (AMPK) and c-Jun terminal kinase (JNK). XOR knockdown and the XOR inhibitor allopurinol blocked gemcitabine-induced TAK1, JNK, AMPK, and Unc51-like kinase 1 (ULK1)S555 phosphorylation and gemcitabine-induced autophagy. Inhibition of the ATM-Chk pathway, which inhibits genotoxic drug-induced uric acid production, blocked gemcitabine-induced autophagy by inhibiting TAK1 activation. Exogenous uric acid in its salt form, monosodium urate (MSU), induced autophagy by activating TAK1 and its downstream kinases JNK and AMPK. Gene knockdown or the inhibitors of these kinases blocked gemcitabine- and MSU-induced autophagy. Inhibition of autophagy by allopurinol, chloroquine, and 5Z-7-oxozeaenol (5Z), a TAK1-specific inhibitor, enhanced gemcitabine-induced apoptosis. Our study uncovers a previously unrecognized role of XOR in regulating genotoxic drug-induced autophagy and apoptosis and has implications for designing novel therapeutic strategies for cancer treatment.
Assuntos
Ácido Úrico , Xantina Desidrogenase , Humanos , Ácido Úrico/farmacologia , Ácido Úrico/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Alopurinol , Proteínas Quinases Ativadas por AMP/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Autofagia , Dano ao DNA , ApoptoseRESUMO
The understanding of roads and lanes incorporates identifying the level of the road, the position and count of lanes, and ending, splitting, and merging roads and lanes in highway, rural, and urban scenarios. Even though a large amount of progress has been made recently, this kind of understanding is ahead of the accomplishments of the present perceptual methods. Nowadays, 3D lane detection has become the trending research in autonomous vehicles, which shows an exact estimation of the 3D position of the drivable lanes. This work mainly aims at proposing a new technique with Phase I (road or non-road classification) and Phase II (lane or non-lane classification) with 3D images. Phase I: Initially, the features, such as the proposed local texton XOR pattern (LTXOR), local Gabor binary pattern histogram sequence (LGBPHS), and median ternary pattern (MTP), are derived. These features are subjected to the bidirectional gated recurrent unit (BI-GRU) that detects whether the object is road or non-road. Phase II: Similar features in Phase I are further classified using the optimized BI-GRU, where the weights are chosen optimally via self-improved honey badger optimization (SI-HBO). As a result, the system can be identified, and whether it is lane-related or not. Particularly, the proposed BI-GRU + SI-HBO obtained a higher precision of 0.946 for db 1. Furthermore, the best-case accuracy for the BI-GRU + SI-HBO was 0.928, which was better compared with honey badger optimization. Finally, the development of SI-HBO was proven to be better than the others.
Assuntos
Acidentes de Trânsito , População Rural , HumanosRESUMO
Plasma xanthine oxidoreductase (XOR) activity in patients with cardiopulmonary arrest (CPA) has not yet been studied.A total of 1,158 patients who required intensive care and 231 control patients who attended a cardiovascular outpatient clinic were prospectively analyzed. Blood samples were collected within 15 minutes of admission from patients in intensive care patients, which were divided into a CPA group (n = 1,053) and a no-CPA group (n = 105). Plasma XOR activity was compared between the 3 groups and factors independently associated with extremely elevated XOR activity were identified using a multivariate logistic regression model. Plasma XOR activity in the CPA group (median, 1,030.0 pmol/hour/mL; range, 233.0-4,240.0 pmol/hour/mL) was significantly higher than in the no-CPA group (median, 60.2 pmol/hour/mL; range, 22.5-205.0 pmol/hour/mL) and control group (median, 45.2 pmol/hour/mL; range, 19.3-98.8 pmol/hour/mL). The regression model showed that out-of-hospital cardiac arrest (OHCA) (yes, odds ratio [OR]: 2.548; 95% confidence interval [CI]: 1.098-5.914; P = 0.029) and lactate levels (per 1.0 mmol/L increase, OR: 1.127; 95% CI: 1.031-1.232; P = 0.009) were independently associated with high plasma XOR activity (≥ 1,000 pmol/hour/mL). Kaplan-Meier curve analysis indicated that the prognosis, including all-cause death within 30 days, was significantly poorer in high-XOR patients (XOR ≥ 6,670 pmol/hour/mL) than in the other patients.Plasma XOR activity was extremely high in patients with CPA, especially in OHCA. This would be associated with a high lactate value and expected to eventually lead to adverse outcome in patients with CPA.
Assuntos
Parada Cardíaca Extra-Hospitalar , Xantina Desidrogenase , Humanos , Biomarcadores , Prognóstico , Cuidados Críticos , Parada Cardíaca Extra-Hospitalar/terapiaRESUMO
The rapid progress in the field of fluorescent probes and fluorescent sensing material extended this research area toward more complex molecular logic gates capable of carrying out a variety of sensing functions simultaneously. These molecules are able to calculate a composite result in which the analysis is not performed by a man but by the molecular device itself. Since the first report by de Silva of AND molecular logic gate, all possible logic gates have been achieved at the molecular level, and currently, utilization of more complicated molecular logic circuits is a major task in this field. Comparison between two digits is the simplest logic operation, which could be realized with the simplest logic circuit. That is why the right understanding of the applied principles during the implementation of molecular digital comparators could play a critical role in obtaining logic circuits that are more complicated. Herein, all possible ways for the construction of comparators on the molecular level were discussed, and recent achievements connected with these devices were presented.
RESUMO
Xanthine oxidoreductase (XOR) is a critical, rate-limiting enzyme that controls the last two steps of purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. It also produces reactive oxygen species (ROS) during the catalytic process. The enzyme is generally recognized as a drug target for the therapy of gout and hyperuricemia. The catalytic products uric acid and ROS act as antioxidants or oxidants, respectively, and are involved in pro/anti-inflammatory actions, which are associated with various disease manifestations, including metabolic syndrome, ischemia reperfusion injury, cardiovascular disorders, and cancer. Recently, extensive efforts have been devoted to understanding the paradoxical roles of XOR in tumor promotion. Here, we summarize the expression of XOR in different types of cancer and decipher the dual roles of XOR in cancer by its enzymatic or nonenzymatic activity to provide an updated understanding of the mechanistic function of XOR in cancer. We also discuss the potential to modulate XOR in cancer therapy.
Assuntos
Hiperuricemia , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Ácido Úrico , Xantina Desidrogenase/metabolismoRESUMO
Recent image-style transfer methods use the structure of a VGG feature network to encode and decode the feature map of the image. Since the network is designed for the general image-classification task, it has a number of channels and, accordingly, requires a huge amount of memory and high computational power, which is not mandatory for such a relatively simple task as image-style transfer. In this paper, we propose a new technique to size down the previously used style transfer network for eliminating the redundancy of the VGG feature network in memory consumption and computational cost. Our method automatically finds a number of consistently inactive convolution channels during the network training phase by using two new losses, i.e., channel loss and xor loss. The former maximizes the number of inactive channels and the latter fixes the positions of these inactive channels to be the same for the image. Our method improves the image generation speed to be up to 49% faster and reduces the number of parameters by 20% while maintaining style transferring performance. Additionally, our losses are also effective in pruning the VGG16 classifier network, i.e., parameter reduction by 26% and top-1 accuracy improvement by 0.16% on CIFAR-10.
Assuntos
Aumento da Imagem , Redes Neurais de Computação , Aumento da Imagem/métodosRESUMO
This paper puts forward a new algorithm that utilizes compressed sensing and two chaotic systems to complete image compression and encryption concurrently. First, the hash function was utilized to obtain the initial parameters of two chaotic maps, which were the 2D-SLIM and 2D-SCLMS maps, respectively. Second, a sparse coefficient matrix was transformed from the plain image through discrete wavelet transform. In addition, one of the chaotic sequences created by 2D-SCLMS system performed pixel transformation on the sparse coefficient matrix. The other chaotic sequences created by 2D-SLIM were utilized to generate a measurement matrix and perform compressed sensing operations. Subsequently, the matrix rotation was combined with row scrambling and column scrambling, respectively. Finally, the bit-cycle operation and the matrix double XOR were implemented to acquire the ciphertext image. Simulation experiment analysis showed that the compressed encryption scheme has advantages in compression performance, key space, and sensitivity, and is resistant to statistical attacks, violent attacks, and noise attacks.
RESUMO
We consider the problem of Private Information Retrieval with Private Side Information (PIR-PSI), wherein the privacy of the demand and the side information are jointly preserved. Although the capacity of the PIR-PSI setting is known, we observe that the underlying capacity-achieving code construction uses Maximum Distance Separable (MDS) codes therefore contributing to high computational complexity when retrieving the demand. Pointing at this drawback of MDS-based PIR-PSI codes, we propose XOR-based PIR-PSI codes for a simple yet non-trivial setting of two non-colluding databases and two side information files at the user. Although our codes offer substantial reduction in complexity when compared to MDS-based codes, the code-rate marginally falls short of the capacity of the PIR-PSI setting. Nevertheless, we show that our code-rate is strictly higher than that of XOR-based codes for PIR with no side information. As a result, our codes can be useful when privately downloading a file especially after having downloaded a few other messages privately from the same database at an earlier time-instant.
RESUMO
A cloud service to offer entropy has been paid much attention to. As one of the entropy sources, a physical random number generator is used as a true random number generator, relying on its irreproducibility. This paper focuses on a physical random number generator using a field-programmable gate array as an entropy source by employing ring oscillator circuits as a representative true random number generator. This paper investigates the effects of an XOR gate in the oscillation circuit by observing the output signal period. It aims to reveal the relationship between inputs and the output through the XOR gate in the target generator. The authors conduct two experiments to consider the relevance. It is confirmed that combining two ring oscillators with an XOR gate increases the complexity of the output cycle. In addition, verification using state transitions showed that the probability of the state transitions was evenly distributed by increasing the number of ring oscillator circuits.
RESUMO
Background We developed a novel high-sensitive assay for plasma xanthine oxidoreductase (XOR) activity that is not affected by the original serum uric acid level. However, the association of plasma XOR activity with that level has not been fully examined. Methods This cross-sectional study included 191 subjects (91 males, 100 females) registered in the MedCity21 health examination registry. Plasma XOR activity was determined using our assay for plasma XOR activity with [13C2,15N2] xanthine and liquid chromatography/triple quadrupole mass spectrometry. Serum levels of uric acid and adiponectin, and visceral fat area (VFA) obtained by computed tomography were measured, and insulin resistance was determined based on the homeostasis model assessment (HOMA-IR) index. Results The median values for uric acid and plasma XOR activity were 333 µmol/L and 26.1 pmol/h/mL, respectively. Multivariable linear regression analysis showed a significant and positive association of serum uric acid level (coefficient: 26.503; 95% confidence interval: 2.06, 50.945; p = 0.035) with plasma XOR activity independent of VFA and HOMA-IR, and also age, gender, alcohol drinking habit, systolic blood pressure, estimated glomerular filtration rate (eGFR), glycated hemoglobin A1c, triglyceride, and adiponectin levels. The "gender*XOR activity" interaction was not significant (p = 0.91), providing no evidence that gender modifies the relationship between plasma XOR activity and serum uric acid level. Conclusions Plasma XOR activity was found to be positively associated with serum uric acid level independent of other known confounding factors affecting that level, including gender difference, eGFR, adiponectin level, VFA, and HOMA-IR.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Ácido Úrico/sangue , Xantina Desidrogenase/sangue , Xantina/metabolismo , Idoso , Estudos Transversais , Feminino , Humanos , Resistência à Insulina , Gordura Intra-Abdominal , Marcação por Isótopo , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Xantina/química , Xantina Desidrogenase/metabolismoRESUMO
Young adults proactively engage frontoparietal processing of contextual cues to preempt subsequent events. Rather than being preemptive, older adults engage these brain areas reactively upon event occurrences. Reactive frontoparietal processes in older adults, however, might be insufficient for complex contextual neural computations where utilities of contexts are not straightforward but dependent on a set of stimulus-response rules. Applying non-linear logic (XOR) rules in an fMRI experiment, we found higher default-mode network (DMN) activity critical for correctly responding to such contingency in older but not younger adults. Moreover, older individuals with higher proactive cue processing showed better performances with less DMN activity. Thus, DMN processing provides critical support when older adults are faced with complex contextual contingencies. These findings suggest an age-related change in the neurocomputational role of introspective processes in decision-making from young to older adulthood.
Assuntos
Encéfalo/fisiologia , Envelhecimento Cognitivo/fisiologia , Tomada de Decisões/fisiologia , Adulto , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 µm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.
Assuntos
Algoritmos , Humanos , IrisRESUMO
Minimizing the Boolean circuit implementation of a given cryptographic function is an important issue. A number of papers [1], [2], [3], [4] only consider cancellation-free straight-line programs for producing small circuits over GF(2). Cancellation is allowed by the Boyar-Peralta (BP ) heuristic [5, 6]. This yields a valuable tool for practical applications such as building fast software and low-power circuits for cryptographic applications, e.g. AES [5, 7], HMAC-SHA-1 [8], PRESENT [9], GOST [9], and so on. However, the BP heuristic does not take into account the matrix density. In a dense linear system the rows can be computed by adding or removing a few elements from a "common path" that is "close" to almost all rows. The new heuristic described in this paper will merge the idea of "cancellation" and "common path". An extensive testing activity has been performed. Experimental results of the new and the BP heuristic were compared. They show that the Boyar-Peralta results are not optimal on dense systems.
RESUMO
We report an experimental realization of a biochemical XOR gate function that avoids many of the pitfalls of earlier realizations based on biocatalytic cascades. Inputs-represented by pairs of chemicals-cross-react to largely cancel out when both are nearly equal. The cross-reaction can be designed to also optimize gate functioning for noise handling. When not equal, the residual inputs are further processed to result in the output of the XOR type, by biocatalytic steps that allow for further gate-function optimization. The quality of the realized XOR gate is theoretically analyzed.
Assuntos
Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Biocatálise , Glucose Oxidase/metabolismo , Hexoquinase/metabolismo , NAD/metabolismo , Peroxidase/metabolismo , Armoracia/enzimologia , Aspergillus niger/enzimologia , Modelos Moleculares , Pichia/enzimologia , Saccharomyces cerevisiae/enzimologiaRESUMO
We describe a chemical XOR gate design that realizes gate-response function with filtering properties. Such gate-response function is flat (has small gradients) at and in the vicinity of all the four binary-input logic points, resulting in analog noise suppression. The gate functioning involves cross-reaction of the inputs represented by pairs of chemicals to produce a practically zero output when both are present and nearly equal. This cross-reaction processing step is also designed to result in filtering at low output intensities by canceling out the inputs if one of the latter has low intensity compared with the other. The remaining inputs, which were not reacted away, are processed to produce the output XOR signal by chemical steps that result in filtering at large output signal intensities. We analyze the tradeoff resulting from filtering, which involves loss of signal intensity. We also discuss practical aspects of realizations of such XOR gates.
RESUMO
Administration of low-dose endotoxin (lipopolysaccharide, LPS) 24 h before a lethal ischemia induces pharmacological late preconditioning. The exact mechanism of this phenomenon is not clear. Here we aimed to investigate whether low-dose LPS exerts late effects on peroxynitrite formation and activation of Akt, Erk, and STAT3 in the heart. Male Wistar rats were injected with LPS (S. typhimurium; 0.5 mg/kg i.p.) or saline. Twenty-four hours later, hearts were isolated, perfused for 10 min, and then used for biochemical analyses. LPS pretreatment enhanced cardiac formation of the peroxynitrite marker 3-nitrotyrosine. LPS pretreatment also increased cardiac levels of the peroxynitrite precursor nitric oxide (NO) and superoxide. The activities of Ca2+-independent NO synthase and xanthine oxidoreductase increased in LPS-pretreated hearts. LPS pretreatment resulted in significantly enhanced phosphorylation of STAT3 and non-significantly increased phosphorylation of Akt without affecting the activation of Erk. In separate experiments, isolated working hearts were subjected to 30 min global ischemia and 20 min reperfusion. LPS pretreatment significantly improved ischemia-reperfusion-induced deterioration of cardiac function. We conclude that LPS pretreatment enhances cardiac peroxynitrite formation and activates STAT3 24 h later, which may contribute to LPS-induced late preconditioning.
Assuntos
Endotoxinas/administração & dosagem , Precondicionamento Isquêmico Miocárdico , Isquemia Miocárdica/metabolismo , Ácido Peroxinitroso/biossíntese , Fator de Transcrição STAT3/metabolismo , Animais , Lactato Desidrogenases/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxirredução , Ratos , Tirosina/análogos & derivados , Tirosina/biossínteseRESUMO
People can use their web browser or mobile devices to access web services and applications which are built into these servers. Users have to input their identity and password to login the server. The identity and password may be appropriated by hackers when the network environment is not safe. The multiple secure authentication protocol can improve the security of the network environment. Mobile devices can be used to pass the authentication messages through Wi-Fi or 3G networks to serve as a second communication channel. The content of the message number is not considered in a multiple secure authentication protocol. The more excessive transmission of messages would be easier to collect and decode by hackers. In this paper, we propose two schemes which allow the server to validate the user and reduce the number of messages using the XOR operation. Our schemes can improve the security of the authentication protocol. The experimental results show that our proposed authentication protocols are more secure and effective. In regard to applications of second authentication communication channels for a smart access control system, identity identification and E-wallet, our proposed authentication protocols can ensure the safety of person and property, and achieve more effective security management mechanisms.
Assuntos
Segurança Computacional/instrumentação , Confidencialidade , Internet , Smartphone , Telemedicina/instrumentação , Redes de Comunicação de Computadores , HumanosRESUMO
Hyperuricemia results due to the underexcretion of uric acid through kidneys or overproduction due to either intake of purine-rich foods, a high caloric diet, or a decreased activity of purine recycler hypoxanthine-guanine phosphoribosyl transferase (HGPRT). Increased xanthine oxidoreductase (XOR) enzyme activity may contribute to hyperuricemia. Literature provides growing evidence that an independent component that contributes to the development of metabolic syndrome (MetS) and associated comorbidities is hyperuricemia. Thus, precise cellular mechanisms involved during MetS and related comorbidities in hyperuricemia, and the role of anti-urate medicines in these mechanisms require further investigations. We searched online libraries PubMed and Google Scholar for data collection. We used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines for literature identification, selection, screening, and determining eligibility to produce unbiased meaningful outcomes. We applied quality assessment tools for the quality appraisal of the studies. And, outcomes were extracted from the selected studies, which revealed the relationship between hyperuricemia and MetS components by causing inflammation, endothelial dysfunction, oxidative stress, and endoplasmic reticulum stress. The selected studies reflected the role of xanthine oxide (XO) inhibitors beyond inhibition. This systematic review concluded that hyperuricemia independently causes inflammation, oxidative stress, endothelial damage, and endoplasmic reticulum stress in patients with hyperuricemia. These mechanisms provide a cellular basis for metabolic syndrome and related comorbidities. In this context, XO inhibitors and their beneficial effects go beyond XOR inhibition to ameliorate these pathological mechanisms.
RESUMO
AIM/INTRODUCTION: Xanthine oxidoreductase (XOR) inhibitor treatment, which reduces reactive oxygen species (ROS) production and increases adenosine triphosphate (ATP) synthesis, has been reported to improve glycemic control. The possible protective effects of XOR inhibitor treatment on insulin secretory capacity were investigated in patients with type 2 diabetes. MATERIALS AND METHODS: This retrospective cross-sectional study included 428 patients with type 2 diabetes. Insulin secretory capacity was assessed based on fasting serum C-peptide concentration (CPR) and C-peptide index (CPI) in all subjects, while insulin resistance in non-insulin users (n = 312) was determined using the homeostasis model assessment of insulin resistance (HOMA-IR) index. RESULTS: Median values for CPR and CPI in all subjects were 2.4 ng/mL and 1.5, respectively, while that for HOMA-IR in non-insulin users was 3.2. The XOR inhibitor users (n = 72) had significantly (P < 0.001) higher CPR and CPI levels than non-users (n = 356). Multivariable regression analyses showed XOR inhibitor use was positively associated with CPR (ß = 0.153, P = 0.001) and CPI (ß = 0.144, P = 0.001). Similar results were observed in propensity score analyses. In subgroup analyses of patients with a preserved estimated glomerular filtration rate (≥60 mL/min/1.73 m2) and non-insulin users, these associations remained significant. Furthermore, the associations were significant in patients with lower (≤6.0 mg/dL) but not with higher (>6.0 mg/dL) uric acid levels (P for interaction <0.05). On the other hand, XOR inhibitor use showed no significant association with HOMA-IR. CONCLUSIONS: The results of XOR inhibitor treatment, especially a sufficient reduction in serum uric acid level, may provide protective effects on insulin secretory capacity in patients with type 2 diabetes.