Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(10): 2287-2292, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29444857

RESUMO

Recently, it was argued [Medvedev MG, et al. (2017) Science 355:49-52] that the development of density functional approximations (DFAs) is "straying from the path toward the exact functional." The exact functional should yield both exact energy and density for a system of interest; nevertheless, they found that many heavily fitted functionals for molecular energies actually lead to poor electron densities of atoms. They also observed a trend that, for the nonempirical and few-parameter functionals, densities can be improved as one climbs up the first four rungs of the Jacob's ladder of DFAs. The XYG3 type of doubly hybrid functionals (xDHs) represents a less-empirical and fewer-parameter functional on the top fifth rung, in which both the Hartree-Fock-like exchange and the second-order perturbative (MP2-like) correlation are hybridized with the low rung functionals. Here, we show that xDHs can well describe both density and energy for the same atomic set of Medvedev et al., showing that the latter trend can well be extended to the top fifth rung.

2.
Plant J ; 95(6): 1114-1128, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932263

RESUMO

Carbohydrate-active enzymes (CAZymes) are central to the biosynthesis and modification of the plant cell wall. An ancient clade of bifunctional plant endo-glucanases (EG16 members) was recently revealed and proposed to represent a transitional group uniting plant xyloglucan endo-transglycosylase/hydrolase (XTH) gene products and bacterial mixed-linkage endo-glucanases in the phylogeny of glycoside hydrolase family 16 (GH16). To gain broader insights into the distribution and frequency of EG16 and other GH16 members in plants, the PHYTOZOME, PLAZA, NCBI and 1000 PLANTS databases were mined to build a comprehensive census among 1289 species, spanning the broad phylogenetic diversity of multiple algae through recent plant lineages. EG16, newly identified EG16-2 and XTH members appeared first in the green algae. Extant EG16 members represent the early adoption of the ß-jellyroll protein scaffold from a bacterial or early-lineage eukaryotic GH16 gene, which is characterized by loop deletion and extension of the N terminus (in EG16-2 members) or C terminus (in XTH members). Maximum-likelihood phylogenetic analysis of EG16 and EG16-2 sequences are directly concordant with contemporary estimates of plant evolution. The lack of expansion of EG16 members into multi-gene families across green plants may point to a core metabolic role under tight control, in contrast to XTH genes that have undergone the extensive duplications typical of cell-wall CAZymes. The present census will underpin future studies to elucidate the physiological role of EG16 members across plant species, and serve as roadmap for delineating the closely related EG16 and XTH gene products in bioinformatic analyses of emerging genomes and transcriptomes.


Assuntos
Celulase/genética , Genoma de Planta/genética , Glicosídeo Hidrolases/genética , Glicosiltransferases/genética , Plantas/enzimologia , Evolução Molecular , Filogenia , Plantas/genética
3.
J Comput Chem ; 40(10): 1113-1122, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30379331

RESUMO

Polycyclic saturated hydrocarbons (PSHs) are attractive candidates as hydrocarbon propellants. To assess their potential values, one of the key factors is to determine their energy contents, such as to calculate their heats of formation (HOF). In this work, we have calculated HOFs for a set of 36 PSHs including exo-Tricyclo[5.2.1.0(2,6) ] decane, the principal component of the high-energy density hydrocarbon fuel commonly identified as JP-10. The results from B3LYP, B3LYP-D3BJ, M06-2X, B2PLYP, B2PLYP-D3BJ, and the XYG3 type of doubly hybrid (xDH) functionals are presented. It is demonstrated here that the xDH functionals yield accurate HOFs in good agreement with those from experiments or the G4 theory. In particular, XYGJ-OS, a low scaling xDH functional, is shown to hold the promise for accurate prediction of HOFs for PSHs of larger sizes. © 2018 Wiley Periodicals, Inc.

4.
New Phytol ; 219(4): 1150-1153, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29851097

RESUMO

Xyloglucan (XyG) is the major noncellulosic nonpectic matrix polysaccharide in cell walls of most land plants. Initially thought to be restricted to land plants, the last decade has seen the detection of XyG and the discovery of synthesis and modification/degradation genes in charophycean green algae (CGA). Recently, a totally new function of XyG was discovered as a potent soil aggregator released by roots and rhizoids of all major groups of land plants. In this Viewpoint, I show the presence of a complex XyG genetic machinery in most CGA groups. I discuss the context of XyG evolution in light of the terrestrialization of early CGA that gave rise to embryophytes and its possible role in early soil formation.


Assuntos
Evolução Biológica , Glucanos/metabolismo , Viridiplantae/metabolismo , Xilanos/metabolismo , Carofíceas/metabolismo , Genes de Plantas , Glucanos/genética , Modelos Biológicos , Viridiplantae/genética , Xilanos/genética
5.
J Comput Chem ; 38(27): 2326-2334, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28786211

RESUMO

The potential energy surface (PES) for the H + CH4 system has been constructed with the recently developed XYG3 doubly hybrid functional, while those with the standard B3LYP hybrid functional, and the Møller-Plesset perturbation theory up to the second order (MP2) are also presented for comparison. Quantum dynamics studies demonstrated that satisfactory results on the reaction probabilities and the rate coefficients can be obtained on top of the XYG3-PES, as compared to the results based on the highly accurate, yet expensive, CCSD(T)-PES (Li et al., J. Chem. Phys. 2015, 142, 204302). Further investigation suggested that the XYG3 functional is useful in providing accurate rate coefficients for some larger systems involving H atom abstractions. © 2017 Wiley Periodicals, Inc.

6.
Ann Bot ; 115(1): 55-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25434027

RESUMO

BACKGROUND AND AIMS: In flowering plants, fertilization relies on the delivery of the sperm cells carried by the pollen tube to the ovule. During the tip growth of the pollen tube, proper assembly of the cell wall polymers is required to maintain the mechanical properties of the cell wall. Xyloglucan (XyG) is a cell wall polymer known for maintaining the wall integrity and thus allowing cell expansion. In most angiosperms, the XyG of somatic cells is fucosylated, except in the Asterid clade (including the Solanaceae), where the fucosyl residues are replaced by arabinose, presumably due to an adaptive and/or selective diversification. However, it has been shown recently that XyG of Nicotiana alata pollen tubes is mostly fucosylated. The objective of the present work was to determine whether such structural differences between somatic and gametophytic cells are a common feature of Nicotiana and Solanum (more precisely tomato) genera. METHODS: XyGs of pollen tubes of domesticated (Solanum lycopersicum var. cerasiforme and var. Saint-Pierre) and wild (S. pimpinellifolium and S. peruvianum) tomatoes and tobacco (Nicotiana tabacum) were analysed by immunolabelling, oligosaccharide mass profiling and GC-MS analyses. KEY RESULTS: Pollen tubes from all the species were labelled with the mAb CCRC-M1, a monoclonal antibody that recognizes epitopes associated with fucosylated XyG motifs. Analyses of the cell wall did not highlight major structural differences between previously studied N. alata and N. tabacum XyG. In contrast, XyG of tomato pollen tubes contained fucosylated and arabinosylated motifs. The highest levels of fucosylated XyG were found in pollen tubes from the wild species. CONCLUSIONS: The results clearly indicate that the male gametophyte (pollen tube) and the sporophyte have structurally different XyG. This suggests that fucosylated XyG may have an important role in the tip growth of pollen tubes, and that they must have a specific set of functional XyG fucosyltransferases, which are yet to be characterized.


Assuntos
Glucanos/metabolismo , Nicotiana/metabolismo , Solanum lycopersicum/metabolismo , Solanum/metabolismo , Xilanos/metabolismo , Arabinose/metabolismo , Fucosiltransferases/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Imuno-Histoquímica , Solanum lycopersicum/enzimologia , Oligossacarídeos/química , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Solanum/enzimologia , Nicotiana/enzimologia
7.
New Phytol ; 219(4): 1139-1141, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30133846
9.
Plant Signal Behav ; 10(6): e1026023, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26176901

RESUMO

Two independent studies have shown that the cell wall of pollen tubes from tobacco and tomato species contained fucosylated xyloglucan (XyG). These findings are intriguing as many reports have shown that XyG of somatic cells of these species is not fucosylated but instead is arabinosylated. In order to produce fucosylated XyG, plants must express a functional galactoside α-2-fucosyltransferase. Here, using a bioinformatics approach, we show that several candidate genes coding for XyG fucosyltransferases are present in the genome of coffee and several Solanaceae species including tomato, tobacco, potato, eggplant and pepper. BLAST and protein alignments with the 2 well-characterized XyG fucosyltransferases from Arabidopsis thaliana and Pisum sativum revealed that at least 6 proteins from different Solanaceae species and from coffee displayed the 3 conserved motifs required for XyG fucosyltransferase activity.


Assuntos
Fucosiltransferases/metabolismo , Genoma de Planta , Proteínas de Plantas/metabolismo , Solanaceae/enzimologia , Solanaceae/genética , Algoritmos , Motivos de Aminoácidos , Sequência de Aminoácidos , Coffea/enzimologia , Simulação por Computador , Fucosiltransferases/química , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Alinhamento de Sequência
10.
Carbohydr Polym ; 99: 190-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24274496

RESUMO

Vitis species include Vitis vinifera, the domesticated grapevine, used for wine and grape agricultural production and considered the world's most important fruit crop. A cell wall preparation, isolated from fully expanded photosynthetically active leaves, was fractionated via chemical and enzymatic reagents; and the various extracts obtained were assayed using high-throughput cell wall profiling tools according to a previously optimized and validated workflow. The bulk of the homogalacturonan-rich pectin present was efficiently extracted using CDTA treatment, whereas over half of the grapevine leaf cell wall consisted of vascular veins, comprised of xylans and cellulose. The main hemicellulose component was found to be xyloglucan and an enzymatic oligosaccharide fingerprinting approach was used to analyze the grapevine leaf xyloglucan fraction. When Paenibacillus sp. xyloglucanase was applied the main subunits released were XXFG and XLFG; whereas the less-specific Trichoderma reesei EGII was also able to release the XXXG motif as well as other oligomers likely of mannan and xylan origin. This latter enzyme would thus be useful to screen for xyloglucan, xylan and mannan-linked cell wall alterations in laboratory and field grapevine populations. This methodology is well-suited for high-throughput cell wall profiling of grapevine mutant and transgenic plants for investigating the range of biological processes, specifically plant disease studies and plant-pathogen interactions, where the cell wall plays a crucial role.


Assuntos
Parede Celular/química , Folhas de Planta/química , Vitis/química , Proteínas de Bactérias/química , Celulose/química , Celulose/isolamento & purificação , Fracionamento Químico , Ácido Edético/análogos & derivados , Ácido Edético/química , Proteínas Fúngicas/química , Glucanos/química , Glucanos/isolamento & purificação , Glicosídeo Hidrolases/química , Ensaios de Triagem em Larga Escala , Mananas/química , Mananas/isolamento & purificação , Paenibacillus/química , Paenibacillus/enzimologia , Pectinas/química , Pectinas/isolamento & purificação , Extratos Vegetais/química , Trichoderma/química , Trichoderma/enzimologia , Xilanos/química , Xilanos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa