Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105773, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382671

RESUMO

The nucleolus, a membrane-less organelle, is responsible for ribosomal RNA transcription, ribosomal RNA processing, and ribosome assembly. Nucleolar size and number are indicative of a cell's protein synthesis rate and proliferative capacity, and abnormalities in the nucleolus have been linked to neurodegenerative diseases and cancer. In this study, we demonstrated that the nucleolar protein ZNF692 directly interacts with nucleophosmin 1 (NPM1). Knocking down ZNF692 resulted in the nucleolar redistribution of NPM1 in ring-like structures and reduced protein synthesis. Purified NPM1 forms spherical condensates in vitro but mixing it with ZNF692 produces irregular condensates more closely resembling living cell nucleoli. Our findings indicate that ZNF692, by interacting with NPM1, plays a critical role in regulating nucleolar architecture and function in living cells.


Assuntos
Nucléolo Celular , Proteínas de Ligação a DNA , Nucleofosmina , Fatores de Transcrição , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Ribossômico/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo
2.
Funct Integr Genomics ; 24(2): 53, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453820

RESUMO

Hepatocellular carcinoma (HCC) is one of the malignancies with the worst prognosis worldwide, in the occurrence and development of which glycolysis plays a central role. This study uncovered a mechanism by which ZNF692 regulates ALDOA-dependent glycolysis in HCC cells. RT-qPCR and western blotting were used to detect the expression of ZNF692, KAT5, and ALDOA in HCC cell lines and a normal liver cell line. The influences of transfection-induced alterations in the expression of ZNF692, KAT5, and ALDOA on the functions of HepG2 cells were detected by performing MTT, flow cytometry, Transwell, cell scratch, and colony formation assays, and the levels of glucose and lactate were determined using assay kits. ChIP and luciferase reporter assays were conducted to validate the binding of ZNF692 to the KAT5 promoter, and co-IP assays to detect the interaction between KAT5 and ALDOA and the acetylation of ALDOA. ZNF692, KAT5, and ALDOA were highly expressed in human HCC samples and cell lines, and their expression levels were positively correlated in HCC. ZNF692, ALDOA, or KAT5 knockdown inhibited glycolysis, proliferation, invasion, and migration and promoted apoptosis in HepG2 cells. ZNF692 bound to the KAT5 promoter and promoted its activity. ALDOA acetylation levels were elevated in HCC cell lines. KAT5 bound to ALDOA and catalyzed ALDOA acetylation. ALDOA or KAT5 overexpression in the same time of ZNF692 knockdown, compared to ZNF692 knockdown only, stimulated glycolysis, proliferation, invasion, and migration and reduced apoptosis in HepG2 cells. ZNF692 promotes the acetylation modification and protein expression of ALDOA by catalyzing KAT5 transcription, thereby accelerating glycolysis to drive HCC cell development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Células Hep G2 , Glicólise , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo
3.
Biol Direct ; 19(1): 28, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650011

RESUMO

BACKGROUND: Osteosarcoma is a diverse and aggressive bone tumor. Driver genes regulating osteosarcoma initiation and progression remains incompletely defined. Zinc finger protein 692 (ZNF692), a kind of Krüppel C2H2 zinc finger transcription factor, exhibited abnormal expression in different types of malignancies and showed a correlation with the clinical prognosis of patients as well as the aggressive characteristics of cancer cells. Nevertheless, its specific role in osteosarcoma is still not well understood. METHODS: We investigated the dysregulation and clinical significance of ZNF692 in osteosarcoma through bioinformatic method and experimental validation. A range of in vitro assays, including CCK-8, colony formation, EdU incorporation, wound healing, and transwell invasion tests, were conducted to assess the impact of ZNF692 on cell proliferation, migration, and invasion in osteosarcoma. A xenograft mouse model was established to evaluate the effect of ZNF692 on tumor growth in vivo. Western blot assay was used to measure the protein levels of MEK1/2, P-MEK1/2, ERK1/2, and P-ERK1/2 in cells that had been genetically modified to either reduce or increase the expression of ZNF692. The relationship between ZNF692 and tyrosine kinase non-receptor 2 (TNK2) were validated by qRT-PCR, chromatin immunoprecipitation and luciferase reporter assays. RESULTS: Expression of ZNF692 was increased in both human osteosarcoma tissues and cell lines. Furthermore, the expression of ZNF692 served as an independent predictive biomarker in osteosarcoma. The results of the survival analysis indicated that increased expression of ZNF692 was associated with worse outcome. Downregulation of ZNF692 inhibits the proliferation, migration, and invasion of osteosarcoma cells, whereas upregulation of ZNF692 has the opposite impact. Western blot assay indicates that reducing ZNF692 decreases phosphorylation of MEK1/2 and ERK1/2, whereas increasing ZNF692 expression enhances their phosphorylation. U0126, a potent inhibitor specifically targeting the MEK/ERK signaling pathway, partially counteracts the impact of ZNF692 overexpression on the proliferation, migration, and invasion of osteosarcoma cells. In addition, ZNF692 specifically interacts with the promoter region of TNK2 and stimulates the transcription of TNK2 in osteosarcoma cells. Forcing the expression of TNK2 weakens the inhibitory impact of ZNF692 knockdown on P-MEK1/2 and P-ERK1/2. Similarly, partly inhibiting TNK2 counteracts the enhancing impact of ZNF692 overexpression on the phosphorylation of MEK1/2 and ERK1/2. Functional tests demonstrate that the suppressive effects of ZNF692 knockdown on cell proliferation, migration, and invasion are greatly reduced when TNK2 is overexpressed. In contrast, the reduction of TNK2 hinders the ability of ZNF692 overexpression to enhance cell proliferation, migration, and invasion. CONCLUSION: ZNF692 promotes the proliferation, migration, and invasion of osteosarcoma cells via the TNK2-dependent stimulation of the MEK/ERK signaling pathway. The ZNF692-TNK2 axis might potentially function as a possible predictive biomarker and a promising target for novel therapeutics in osteosarcoma.


Assuntos
Movimento Celular , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Osteossarcoma , Animais , Feminino , Humanos , Camundongos , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Invasividade Neoplásica , Osteossarcoma/genética , Osteossarcoma/metabolismo
4.
Eur J Med Res ; 29(1): 88, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291502

RESUMO

BACKGROUND: Prostate cancer poses a considerable threat to human health. At present, the mechanism of tumor progression remains unclear. ZNF692 is overexpressed in many tumors, and the high expression of ZNF692 is correlated with tumor aggressiveness and tumor phenotype of prostate cancer, suggesting that ZNF692 may play an important role in tumor biology of prostate cancer. This paper aims to elucidate the relationship between them. METHODS: The expression level of ZNF692 was verified in normal prostate cells (RWPE-1) and prostate cancer cells (LNCaP, PC3, DU145). PC3 cells were selected to construct the ZNF692 knockout prostate cancer cell line. The changes of cell proliferation, apoptosis, invasion and metastasis were detected by CCK8, Edu staining, Transwell assay and scratch assay. The expression levels of related proteins were detected by Western blot. RESULTS: At the cellular level, ZNF692 was overexpressed to varying degrees in prostate cancer cell lines, with the highest expression in PC3 cell lines. CCK8 and Edu results showed that the proliferation of prostate cancer PC3 cells that knocked down ZNF692 was slowed. Transwell assay and scratch assay showed reduced invasion and migration of prostate cancer PC3 cells that knocked out ZNF692. Flow cytometry showed that the apoptosis rate of prostate cancer PC3 cells after ZNF692 knockout was increased. In addition, after ZNF692 silencing, the expression level of epithelial phenotype E-cadherin increased in PC3 cells, while the expression level of interstitial phenotype N-cadherin, Vimentin, c-Myc, and CyclinA1 decreased. The state of prostate cancer PC3 cells that overexpressed ZNF692 was reversed from the state after ZNF692 was knocked down. CONCLUSION: ZNF692 can be used as a new prognostic marker and a potential biologic therapeutic target for PCa. By inhibiting the expression of c-myc and cyclinA1, the EMT signaling pathway is regulated to provide evidence for its potential molecular mechanism.


Assuntos
Neoplasias da Próstata , Transdução de Sinais , Humanos , Masculino , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais/genética
5.
Discov Oncol ; 15(1): 158, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735008

RESUMO

Clear cell renal cell carcinoma (ccRCC), with high mortality and poor prognosis, is the most common type of renal malignancy. It is necessary to identify new biomarkers that can serve as indicators for the detection of ccRCC at its early stages. In this study, we analyzed the role of classical zinc finger protein 692 (ZNF692) in ccRCC using datasets from The Cancer Genome Atlas (TCGA) and Single Cell Portal and immunohistochemical (IHC) staining of a tissue-microarray, and analyzed the function of ZNF692 in ccRCC cells. The analyses indicated that ZNF692 was upregulated in ccRCC samples compared with normal or paracancerous control samples (P < 0.001) and that the expression of this gene was linked to poor overall survival (HR = 2.1, P < 0.0001). The knockdown of ZNF692 inhibited the proliferation and migration of ccRCC cells by target GTPase-activating protein (SH3 domain)-binding protein 2 (G3BP2), and transmembrane 9 superfamily member 2 (TM9SF2)). T, B, proximal, and collecting tubule cells are the dominant cell types in normal kidney tissue where ZNF692 is expressed. In addition, immune checkpoint blockade (ICB) therapy dramatically changed the expression patterns of ZNF692. Collectively, these data indicate that ZNF692 may serve as prognosis, and as a potential indicator of the response to ICB therapy, a possibility needs to be verified by a case‒control study.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa