Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39146933

RESUMO

Somatic mutations in genes encoding components of the RNA splicing machinery occur frequently in multiple forms of cancer. The most frequently mutated RNA splicing factors in cancer impact intronic branch site and 3' splice site recognition. These include mutations in the core RNA splicing factor SF3B1 as well as mutations in the U2AF1/2 heterodimeric complex, which recruits the SF3b complex to the 3' splice site. Additionally, mutations in splicing regulatory proteins SRSF2 and RBM10 are frequent in cancer, and there has been a recent suggestion that variant forms of small nuclear RNAs (snRNAs) may contribute to splicing dysregulation in cancer. Here, we describe molecular mechanisms by which mutations in these factors alter splice site recognition and how studies of this process have yielded new insights into cancer pathogenesis and the molecular regulation of splicing. We also discuss data linking mutant RNA splicing factors to RNA metabolism beyond splicing.

2.
Genet Med ; 26(4): 101059, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38158857

RESUMO

PURPOSE: Oral-facial-digital (OFD) syndromes are genetically heterogeneous developmental disorders, caused by pathogenic variants in genes involved in primary cilia formation and function. We identified a previously undescribed type of OFD with brain anomalies, ranging from alobar holoprosencephaly to pituitary anomalies, in 6 unrelated families. METHODS: Exome sequencing of affected probands was supplemented with alternative splicing analysis in patient and control lymphoblastoid and fibroblast cell lines, and primary cilia structure analysis in patient fibroblasts. RESULTS: In 1 family with 2 affected males, we identified a germline variant in the last exon of ZRSR2, NM_005089.4:c.1211_1212del NP_005080.1:p.(Gly404GlufsTer23), whereas 7 affected males from 5 unrelated families were hemizygous for the ZRSR2 variant NM_005089.4:c.1207_1208del NP_005080.1:p.(Arg403GlyfsTer24), either occurring de novo or inherited in an X-linked recessive pattern. ZRSR2, located on chromosome Xp22.2, encodes a splicing factor of the minor spliceosome complex, which recognizes minor introns, representing 0.35% of human introns. Patient samples showed significant enrichment of minor intron retention. Among differentially spliced targets are ciliopathy-related genes, such as TMEM107 and CIBAR1. Primary fibroblasts containing the NM_005089.4:c.1207_1208del ZRSR2 variant had abnormally elongated cilia, confirming an association between defective U12-type intron splicing, OFD and abnormal primary cilia formation. CONCLUSION: We introduce a novel type of OFD associated with elongated cilia and differential splicing of minor intron-containing genes due to germline variation in ZRSR2.


Assuntos
Processamento Alternativo , Síndromes Orofaciodigitais , Masculino , Humanos , Processamento Alternativo/genética , Síndromes Orofaciodigitais/genética , Splicing de RNA , Íntrons , Spliceossomos/genética , Ribonucleoproteínas/genética
3.
Rinsho Ketsueki ; 64(9): 875-883, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37793861

RESUMO

The process of RNA splicing plays a pivotal role in gene expression and genetic information modification by converting pre-mRNA into mature mRNA. Dysregulation of this process has been associated with aberrant gene expression and function, leading to hematopoietic malignancies. Through recent clinical and mouse model analyses, insights have been gained into the mechanisms underlying splicing factor mutations that aid in myelodysplastic syndrome and acute myeloid leukemia. These mutations affect genes that modulate diverse cellular processes, including chromatin regulation, transcription factors, proliferation signaling, and inflammation pathway. The relationship between aberrant splicing and cancer remains unclear despite progress in understanding the functional consequences of splicing factor mutations. This review focuses on the mechanisms of disease development because of splicing factor mutations and their potential mechanism-based therapeutic applications.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Animais , Camundongos , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Neoplasias Hematológicas/genética , Síndromes Mielodisplásicas/terapia , Leucemia Mieloide Aguda/genética , Mutação
4.
Cancer Sci ; 113(9): 2934-2942, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35766428

RESUMO

Pre-mRNA splicing is now widely recognized as a cotranscriptional and post-transcriptional mechanism essential for regulating gene expression and modifying gene product function. Mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are now considered among the most recurrent genetic abnormalities in patients with cancer, particularly hematologic malignancies. These include mutations in the major (U2-type) and minor (U12-type) spliceosomes, which remove >99% and ~0.35% of introns, respectively. Growing evidence indicates that aberrant splicing of evolutionarily conserved U12-type minor introns plays a crucial role in cancer as the minor spliceosome component, ZRSR2, is subject to recurrent, leukemia-associated mutations, and intronic mutations have been shown to disrupt the splicing of minor introns. Here, we review the importance of minor intron regulation, the molecular effects of the minor (U12-type) spliceosomal mutations and cis-regulatory regions, and the development of minor intron studies for better understanding of cancer biology.


Assuntos
Neoplasias , Splicing de RNA , Humanos , Íntrons/genética , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo
5.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142581

RESUMO

ZRSR2 (zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2) is an essential splicing factor involved in 3' splice-site recognition as a component of both the major and minor spliceosomes that mediate the splicing of U2-type (major) and U12-type (minor) introns, respectively. Studies of ZRSR2-depleted cell lines and ZRSR2-mutated patient samples revealed its essential role in the U12-dependent minor spliceosome. However, the role of ZRSR2 during embryonic development is not clear, as its function is compensated for by Zrsr1 in mice. Here, we utilized the zebrafish model to investigate the role of zrsr2 during embryonic development. Using CRISPR/Cas9 technology, we generated a zrsr2-knockout zebrafish line, termed zrsr2hg129/hg129 (p.Trp167Argfs*9) and examined embryo development in the homozygous mutant embryos. zrsr2hg129/hg129 embryos displayed multiple developmental defects starting at 4 days post fertilization (dpf) and died after 8 dpf, suggesting that proper Zrsr2 function is required during embryonic development. The global transcriptome analysis of 3 dpf zrsr2hg129/hg129 embryos revealed that the loss of Zrsr2 results in the downregulation of essential metabolic pathways and the aberrant retention of minor introns in about one-third of all minor intron-containing genes in zebrafish. Overall, our study has demonstrated that the role of Zrsr2 as a component of the minor spliceosome is conserved and critical for proper embryonic development in zebrafish.


Assuntos
Splicing de RNA , Ribonucleoproteínas , Peixe-Zebra , Animais , Camundongos , Desenvolvimento Embrionário , Íntrons/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Sítios de Splice de RNA , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Spliceossomos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527007

RESUMO

Minor splicing plays an important role in vertebrate development. Zrsr1 and Zrsr2 paralog genes have essential roles in alternative splicing, mainly participating in the recognition of minor (U12) introns. To further explore their roles during early embryo development, we produced Zrsr1mu and Zrsr2mu mutant mice, containing truncating mutations within the second zinc finger domain. Both homozygous mutant mice were viable with a normal lifespan. When we crossed a homozygous Zrsr2mu/mu female with Zrsr1mu/mu male, the double heterozygotes were non-viable, giving rise to embryos that stopped developing mainly between the 2- and 4-cell stages, just after zygotic gene activation. RNA-seq analysis of Zrsr1/2mu 2-cell embryos showed altered gene and isoform expression of thousands of genes enriched in gene ontology terms and biological pathways related to ribosome, RNA transport, spliceosome, and essential zygotic gene activation steps. Alternative splicing was analyzed, showing a significant increase in intron retention in both U2 and U12 intron-containing genes related to cell cycle and mitotic nuclear division. Remarkably, both Zrsr1 and Zrsr2 were required for the conversion of mouse-induced pluripotent stem cells into 2C-like cells. According to our results, Zrsr1 or Zrsr2 are necessary for ZGA and both are indispensable for the conversion of induced pluripotent stem cells into 2C-like cells.


Assuntos
Blastocisto/citologia , Ribonucleoproteínas/genética , Fator de Processamento U2AF/genética , Animais , Blastocisto/fisiologia , Desenvolvimento Embrionário/genética , Éxons , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Íntrons , Masculino , Camundongos Mutantes , Camundongos Transgênicos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia
7.
Adv Exp Med Biol ; 907: 215-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27256388

RESUMO

Many cancers demonstrate aberrant splicing patterns that contribute to their development and progression. Recently, recurrent somatic mutations of genes encoding core subunits of the spliceosome have been identified in several different cancer types. These mutations are most common in hematologic malignancies like the myelodysplastic syndromes (MDS), acute myeloid leukemia, and chronic lymphocytic leukemia, but also in occur in several solid tumors at lower frequency. The most frequent mutations occur in SF3B1, U2AF1, SRSF2, and ZRSR2 and are largely exclusive of each other. Mutations in SF3B1, U2AF1, and SRSF2 acquire heterozygous missense mutations in specific codons, resembling oncogenes. ZRSR2 mutations include clear loss-of-function variants, a pattern more common to tumor suppressor genes. These splicing factors are associated with distinct clinical phenotypes and patterns of mutation in different malignancies. Mutations have both diagnostic and prognostic relevance. Splicing factor mutations appear to affect only a minority of transcripts which show little overlap by mutation type. How differences in splicing caused by somatic mutations of spliceosome subunits lead to oncogenesis is not clear and may involve different targets in each disease type. However, cells with mutated splicing machinery may be particularly vulnerable to further disruption of the spliceosome suggesting a novel strategy for the targeted therapy of cancers.


Assuntos
Mutação , Proteínas de Neoplasias/fisiologia , Neoplasias/genética , Fatores de Processamento de RNA/genética , Splicing de RNA/genética , Neoplasias Hematológicas/genética , Humanos , Síndromes Mielodisplásicas/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fenótipo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Fatores de Processamento de RNA/antagonistas & inibidores , Fatores de Processamento de RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/fisiologia , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/fisiologia , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/fisiologia
8.
Int J Hematol ; 118(4): 489-493, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37029861

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive subtype of myeloid malignancy characterized by skin, lymph node and central nervous system (CNS) involvement. Although various regimens are used, a standard therapeutic strategy for BPDCN has not been established. Recent studies revealed that BPDCN patients frequently have a mutation in ZRSR2, which is a minor spliceosome component. However, the association between the clinical features of BPDCN and ZRSR2 mutational status remains unknown. A 70-year-old man was referred to our hospital with skin rash and enlarged lymph nodes, as well as blasts in the peripheral blood. BPDCN was diagnosed based on the immunophenotype of the blasts derived from bone marrow. Whole exome sequencing revealed that BPDCN cells collected at diagnosis had mutations in ZRSR2, ZBTB33, CUL3, TET2 and NRAS. RNA sequencing analysis indicated that U12-type intron retention occurred in LZTR1, caused by ZRSR2 loss. After seven cycles of venetoclax combined with azacitidine therapy, BPDCN cells appeared in the peripheral blood and infiltrated the CNS. Two KRAS mutated clones appeared at BPDCN recurrence. These findings are important for understanding the pathogenesis of BPDCN, which will inform development of novel therapeutic strategies.


Assuntos
Neoplasias Hematológicas , Neoplasias Cutâneas , Masculino , Humanos , Idoso , Células Dendríticas/patologia , Neoplasias Cutâneas/patologia , Transdução de Sinais , Evolução Clonal/genética , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Fatores de Transcrição/genética
9.
Cancers (Basel) ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37444402

RESUMO

The characterization of the molecular landscape and the advent of targeted therapies have defined a new era in the prognostication and treatment of acute myeloid leukemia. Recent revisions in the European LeukemiaNet 2022 guidelines have refined the molecular, cytogenetic, and treatment-related boundaries between myelodysplastic neoplasms (MDS) and AML. This review details the molecular mechanisms and cellular pathways of myeloid maturation aberrancies contributing to dysplasia and leukemogenesis, focusing on recent molecular categories introduced in ELN 2022. We provide insights into novel and rational therapeutic combination strategies that exploit mechanisms of leukemogenesis, highlighting the underpinnings of splicing factors, the cohesin complex, and chromatin remodeling. Areas of interest for future research are summarized, and we emphasize approaches designed to advance existing treatment strategies.

10.
Cureus ; 14(2): e22632, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35371815

RESUMO

Alternative splicing is an epigenetic mechanism that plays a role in the development and function of antigen-specific lymphocytes. One such is the zinc-finger-RNA-binding-motif-and-serine/arginine-rich-2 (ZRSR2), which is clinically implicated in myelodysplastic syndrome and leukemia. Here, we present a case of a young male with myriad autoimmune conditions and adenocarcinoma of the colon in the setting of ZRSR2 mutation. A 28-year-old male with common variable immunodeficiency disease, atopic dermatitis, autoimmune gastroenteropathy, inflammatory polyarthropathy, primary bone marrow failure, colon cancer, and family history of Lynch syndrome was admitted to our hospital for an acute flare of autoimmune enteropathy secondary to subtherapeutic tacrolimus levels. He initially developed pancytopenia at the age of 26 years. Workup for HIV, hepatitis, cytomegalovirus, human-herpesvirus 6, parvovirus was negative. Partial thromboplastin time (PTT), international normalized ratio (INR), d-dimer, ferritin, iron profile, antinuclear antibodies (ANA) screen was unremarkable. Direct, indirect, and super-combs antibodies were undetectable. Chromosomal study for Fanconi-related chromosomal breakage and telomerase gene panel was negative. Flow cytometry did not reveal an abnormal clone. Bone marrow biopsy showed markedly hypocellular marrow with reduced trilineage hematopoiesis and 1% blasts with normal cytogenetics, immunohistochemistry, fluorescence in situ hybridization (FISH), and negative for myelodysplastic syndrome and paroxysmal nocturnal hemoglobinuria (PNH). Cincinnati inherited children's bone marrow transplant (BMT) panel was negative. He was diagnosed with aplastic anemia and was treated with antithymocyte globulin, cyclosporine, prednisone, and currently tacrolimus. At the age of 26 years, he was diagnosed with colon cancer. Immunohistochemistry was positive for MLH1, but the confirmatory genetic testing for Lynch syndrome was negative. He underwent total proctocolectomy and ileostomy and is currently in remission. Next-generation sequencing of bone marrow revealed a germline homozygous ZRSR2 mutation.  ZRSR2 spliceosome mutations are more common in males as it's an X-linked gene. They are seen in myelodysplastic syndrome, leukemia, increased autoimmune phenomenon, and 35 cases of colon cancer associated with this mutation are reported. In the setting of aplastic anemia and lynch negative colon cancer, we suspect our patient could have aplastic anemia due to an autoimmune phenomenon, underlying common variable immunodeficiency disease (CVID), or the new ZRSR2 mutation could be playing a role. Further studies and research is warranted to determine its true association with the disease entities. The underlying contributing factor is ZRSR2 mutation.

11.
J Int Med Res ; 49(2): 300060520982667, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33530792

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive hematodermic malignancy derived from plasmacytoid dendritic cell precursors. Despite advances in our understanding of tumor cell surface markers, the pathogenesis of BPDCN remains largely unknown. No standard or optimal treatments are available for BPDCN, and the prognosis is usually poor. We report herein a case of BPDCN that harbored multiple genetic mutations in epigenetic modifiers such as TET2 and ZRSR2. Genetic studies in patients with BPDCN may provide insights into the underlying pathogenesis, prediction of clinical prognosis, and development of better targeted therapeutics for this rare clinical entity.


Assuntos
Neoplasias Hematológicas , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Células Dendríticas , Epigênese Genética , Neoplasias Hematológicas/genética , Humanos , Mutação
12.
Annu Rev Cancer Biol ; 3(1): 167-185, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32864546

RESUMO

RNA splicing, the enzymatic process of removing segments of premature RNA to produce mature RNA, is a key mediator of proteome diversity and regulator of gene expression. Increased systematic sequencing of the genome and transcriptome of cancers has identified a variety of means by which RNA splicing is altered in cancer relative to normal cells. These findings, in combination with the discovery of recurrent change-of-function mutations in splicing factors in a variety of cancers, suggest that alterations in splicing are drivers of tumorigenesis. Greater characterization of altered splicing in cancer parallels increasing efforts to pharmacologically perturb splicing and early-phase clinical development of small molecules that disrupt splicing in patients with cancer. Here we review recent studies of global changes in splicing in cancer, splicing regulation of mitogenic pathways critical in cancer transformation, and efforts to therapeutically target splicing in cancer.

13.
Anticancer Res ; 35(5): 3081-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25964599

RESUMO

BACKGROUND: Hypomethylating agents, such as azacitidine and decitabine, now constitute one of the mainstays of myelodysplastic syndrome (MDS) treatment. In recent years, novel recurrent mutations in multiple genes encoding RNA spliceosomal machinery (SRSF2, U2AF1, ZRSR2, SF3B1) were revealed. However, the clinical impact of these mutations on the outcomes of treatment of MDS patients with hypomethylating agents has not been described. PATIENTS AND METHODS: A total of 58 de novo MDS patients were included in the study who had received first-line decitabine treatment. Polymerase chain reaction (PCR) followed by direct sequencing analyses was performed for the spliceosomal machinery genes including SRSF2, U2AF1 and ZRSR2. RESULTS: In the present analysis of 58 Korean MDS patients, mutations in the splicing machinery genes SRSF2, U2AF1 and ZRSR2 were detected in 5 (8.6%), 10 (17.2%) and 6 (10.3%) patients, respectively, and the incidence of SRSF2 mutation was lower than those of previous series. The overall response rates (ORRs) including complete remission (CR), partial response (PR), and marrow CR (mCR) were 42.9% in the spliceosome wild-type (WT) group and 46.7% in the spliceosome-mutated group (p>0.999). The median OS was 22.0 months in the spliceosome-WT group and 15.9 months in the spliceosome-mutated group (p=0.267) CONCLUSION: This study firstly reports the impact of mutations of the spliceosomal machinery genes on the outcomes of decitabine treatment in MDS. The mutational status of the SRSF2, U2AF1 and ZRSR2 did not affect the response rate or survival in MDS patients who had received first-line decitabine treatment. Further studies are needed to confirm the prognostic relevance of spliceosome mutations to the clinical outcomes of treatment with hypomethylating agents.


Assuntos
Azacitidina/análogos & derivados , Síndromes Mielodisplásicas/genética , Proteínas Nucleares/genética , Ribonucleoproteínas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Azacitidina/administração & dosagem , Decitabina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Prognóstico , Splicing de RNA/genética , Fatores de Processamento de Serina-Arginina , Spliceossomos/efeitos dos fármacos , Spliceossomos/genética , Fator de Processamento U2AF , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa