Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2307143121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38330011

RESUMO

Zinc is an essential nutrient-it is stored during periods of excess to promote detoxification and released during periods of deficiency to sustain function. Lysosome-related organelles (LROs) are an evolutionarily conserved site of zinc storage, but mechanisms that control the directional zinc flow necessary for homeostasis are not well understood. In Caenorhabditis elegans intestinal cells, the CDF-2 transporter stores zinc in LROs during excess. Here, we identify ZIPT-2.3 as the transporter that releases zinc during deficiency; ZIPT-2.3 transports zinc, localizes to the membrane of LROs in intestinal cells, and is necessary for zinc release from LROs and survival during zinc deficiency. In zinc excess and deficiency, the expression levels of CDF-2 and ZIPT-2.3 are reciprocally regulated at the level of mRNA and protein, establishing a fundamental mechanism for directional flow to promote homeostasis. To elucidate how the ratio of CDF-2 and ZIPT-2.3 is altered, we used super-resolution microscopy to demonstrate that LROs are composed of a spherical acidified compartment and a hemispherical expansion compartment. The expansion compartment increases in volume during zinc excess and deficiency. These results identify the expansion compartment as an unexpected structural feature of LROs that facilitates rapid transitions in the composition of zinc transporters to mediate homeostasis, likely minimizing the disturbance to the acidified compartment.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Transporte , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Lisossomos/metabolismo , Organelas/metabolismo , Homeostase , Zinco/metabolismo
2.
Pharmacol Res ; 199: 107039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123108

RESUMO

Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.


Assuntos
Proteínas de Transporte de Cátions , Doenças Neurodegenerativas , Humanos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Progressão da Doença , Homeostase , Zinco/metabolismo
3.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339129

RESUMO

Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.


Assuntos
Cádmio , Neoplasias , Feminino , Humanos , Animais , Camundongos , Cádmio/toxicidade , Cádmio/metabolismo , Carcinogênese , Zinco , Transformação Celular Neoplásica , Ferro , Neoplasias/induzido quimicamente
4.
Anim Biotechnol ; 34(7): 2910-2916, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36137171

RESUMO

Tribasic zinc sulfate (TBZ) is insoluble in water and chemically less active than zinc sulfate, making it more suitable to be used in pig diet. To investigate the effects of TBZ on the growth performance, gut morphology, and zinc transporter expression levels, we performed a single-factor experiment and 168 pigs were allocated to three groups with seven pens per treatment. Pigs were either fed a basal diet without zinc supplementation (control group), or a basal diet supplemented with TBZ at 100 mg/kg diet (LTBZ group) or 1000 mg/kg diet (HTBZ group). We found that daily weight gain and feed intake were higher in the LTBZ group than in the HTBZ and control groups. The pigs in the LTBZ group had a higher villus height and villus height/crypt depth ratio when compared with other pigs. Moreover, the pigs in the LTBZ group exhibited higher mRNA expression levels of solute carrier family 39 and lower expression levels of solute carrier family 30 than those fed the HTBZ-supplemented diet. Together, these results indicate that TBZ may potentially be used as a dietary zinc source for young growing pigs and that dietary supplementation with LTBZ benefits growth performance and gut morphology.


Assuntos
Sulfatos , Sulfato de Zinco , Suínos , Animais , Dieta/veterinária , Zinco/farmacologia , Zinco/metabolismo , Suplementos Nutricionais , Ração Animal/análise
5.
Biochem Genet ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091184

RESUMO

Intracellular free Zn2+ ([Zn2+]i) is less than 1-nM in cardiomyocytes and its regulation is performed with Zn2+-transporters. However, the roles of Zn2+-transporters in cardiomyocytes are not defined exactly yet. Here, we aimed to examine the role of an overexpression and subcellular localization of a ZnT6 in insulin-resistance mimic H9c2 cardiomyoblasts (IR-cells; 50-µM palmitic acid for 24-h incubation). We used both IR-cells and ZnT6-overexpressed (ZnT6OE) cells in comparison to those of H9c2 cells (CON-cells). The IR-cells have higher ZnT6-protein levels than CON-cells while this level was similar to those of ZnT6OE-cells. The [Zn2+]i in IR-cells was increased significantly and mitochondrial localization of ZnT6 was demonstrated in these cells by using confocal microscopy visualization. Furthermore, electron microscopy analysis demonstrated abnormal morphological appearance in both IR-cells and ZnT6OE-cells characterized by irregular mitochondrion cristae and condensed and dilated cisterna in the sarcoplasmic reticulum. Mitochondria were similarly depolarized in both IR-cells and ZnT6OE-cells. The protein expression level of a mitofusin protein MFN2 in the IR-cells was decreased, significantly, whereas, it was found significantly upregulated in both ZnT6-OE-cells and IR-incubated ZnT6OE-cells, which demonstrates the role of ZnT6-overexpression but not IR. Additionally, the total protein level of a mitochondrial fission protein, dynamin-related protein 1, DRP1 was found to be increased over 1.5-fold in IR-cells while this increase was found to be higher in the ZnT6OE-cells than those of IR-cells, demonstrating an additional effect on IR-increase. ZnT6-overexpression induced also significant increases in K-acetylation, trimethylation of histone H3 lysine27, and mono-methylation of histone H3 lysine36, in a similar manner to those of IR-cells. Overall, our data point out an important contribution of ZnT6-overexpression to IR-induced cellular changes, such as alteration in mitochondria function and activation of epigenetic modifications.

6.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902254

RESUMO

The trace element zinc (Zn) displays a wide range of biological functions. Zn ions control intercellular communication and intracellular events that maintain normal physiological processes. These effects are achieved through the modulation of several Zn-dependent proteins, including transcription factors and enzymes of key cell signaling pathways, namely those involved in proliferation, apoptosis, and antioxidant defenses. Efficient homeostatic systems carefully regulate intracellular Zn concentrations. However, perturbed Zn homeostasis has been implicated in the pathogenesis of several chronic human diseases, such as cancer, diabetes, depression, Wilson's disease, Alzheimer's disease, and other age-related diseases. This review focuses on Zn's roles in cell proliferation, survival/death, and DNA repair mechanisms, outlines some biological Zn targets, and addresses the therapeutic potential of Zn supplementation in some human diseases.


Assuntos
Fenômenos Fisiológicos , Oligoelementos , Humanos , Zinco/metabolismo , Oligoelementos/metabolismo , Homeostase/fisiologia , Proteínas de Transporte/metabolismo
7.
J Cell Physiol ; 237(11): 4132-4156, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36181695

RESUMO

Breast cancer is one of the leading causes contributing to the global cancer burden. The triple negative breast cancer (TNBC) molecular subtype accounts for the most aggressive type. Despite progression in therapeutic options and prognosis in breast cancer treatment options, there remains a high rate of distant relapse. With advancements in understanding the role of zinc and zinc carriers in the prognosis and treatment of the disease, the scope of precision treatment/targeted therapy has been expanded. Zinc levels and zinc transporters play a vital role in maintaining cellular homeostasis, tumor surveillance, apoptosis, and immune function. This review focuses on the zinc transporter, LIV1, as an essential target for breast cancer prognosis and emerging treatment options. Previous studies give an insight into the role of LIV1 in fulfilling the most important hallmarks of cancer such as apoptosis, metastasis, invasion, and evading the immune system. Normal tissue expression of LIV1 is limited. Higher expression of LIV1 has been linked to Epithelial-Mesenchymal Transition, histological grade of cancer, and early node metastasis. LIV1 was found to be one of the attractive targets in the therapeutic hunt for TNBCs. TNBCs are an immunogenic breast cancer subtype. As zinc transporters are known to serve as the metabolic gatekeepers of immune cells, this review bridges tumor infiltrating lymphocytes, TNBC and LIV1. In addition, the suitability of LIV1 as an antibody-drug conjugate (Seattle genetics [SGN]-LIV1A) target in TNBC, represents a promising strategy for patients. Early clinical trial results reveal that this novel agent reduces tumor burden by inducing mitotic arrest, immunomodulation, and immunogenic cell death, warranting further investigation of SGN-LIV1A in combination with immuno-oncology agents. Priming the patient's immune response in combination with SGN-LIV1A could eventually change the landscape for the TNBC patient population.


Assuntos
Proteínas de Transporte de Cátions , Neoplasias de Mama Triplo Negativas , Humanos , Biomarcadores Tumorais/uso terapêutico , Proteínas de Transporte , Recidiva Local de Neoplasia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Zinco/metabolismo , Proteínas de Transporte de Cátions/antagonistas & inibidores
8.
Mol Carcinog ; 61(5): 454-471, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35049094

RESUMO

Prostate cancer (PCa) initiation and progression uniquely modify the prostate milieu to aid unrestrained cell proliferation. One salient modification is the loss of the ability of prostate epithelial cells to accumulate high concentrations of zinc; however, molecular alterations associated with loss of zinc accumulating capability in malignant prostate cells remain poorly understood. Herein, we assessed the stage-specific expression of zinc transporters (ZNTs) belonging to the ZNT (SLC30A) and Zrt- and Irt-like protein (ZIP) (SLC39A) solute-carrier family in the prostate tissues of different genetically engineered mouse models (GEMM) of PCa (TMPRSS2-ERG.Ptenflox/flox , Hi-Myc+/- , and transgenic adenocarcinoma of mouse prostate), their age-matched wild-type controls, and 104 prostate core biopsies from human patients with different pathological lesions. Employing immunohistochemistry, differences in the levels of protein expression and spatial distribution of ZNT were evaluated as a function of the tumor stage. Results indicated that the expression of zinc importers (ZIP1, ZIP2, and ZIP3), which function to sequester zinc from circulation and prostatic fluid, was low to negligible in the membranes of the malignant prostate cells in both GEMM and human prostate tissues. Regarding zinc exporters (ZNT1, ZNT2, ZNT9, and ZNT10) that export excess zinc into the extracellular spaces or intracellular organelles, their expression was low in normal prostate glands of mice and humans; however, it was significantly upregulated in prostate adenocarcinoma lesions in GEMM and PCa patients. Together, our findings provide new insights into altered expression of ZNTs during the progression of PCa and indicate that changes in zinc homeostasis could possibly be an early-initiation event during prostate tumorigenesis and a likely prevention/intervention target.


Assuntos
Adenocarcinoma , Proteínas de Transporte de Cátions , Neoplasias da Próstata , Adenocarcinoma/genética , Carcinogênese/genética , Proteínas de Transporte , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Transformação Celular Neoplásica , Humanos , Masculino , Próstata/metabolismo , Neoplasias da Próstata/genética , Zinco/metabolismo
9.
Histochem Cell Biol ; 158(5): 485-496, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35849202

RESUMO

Zinc homeostasis is vital to immune and other organ system functions, yet over a quarter of the world's population is zinc deficient. Abnormal zinc transport or storage protein expression has been linked to diseases, such as cancer and chronic obstructive pulmonary disorder. Although recent studies indicate a role for zinc regulation in vascular functions and diseases, detailed knowledge of the mechanisms involved remains unknown. This study aimed to assess protein expression and localization of zinc transporters of the SLC39A/ZIP family (ZIPs) and metallothioneins (MTs) in human subcutaneous microvessels and to relate them to morphological features and expression of function-related molecules in the microvasculature. Microvessels in paraffin biopsies of subcutaneous adipose tissues from 14 patients undergoing hernia reconstruction surgery were analysed for 9 ZIPs and 3 MT proteins by MQCM (multifluorescence quantitative confocal microscopy). Zinc regulation proteins detected in human microvasculature included ZIP1, ZIP2, ZIP8, ZIP10, ZIP12, ZIP14 and MT1-3, which showed differential localization among endothelial and smooth muscle cells. ZIP1, ZIP2, ZIP12 and MT3 showed significantly (p < 0.05) increased immunoreactivities, in association with increased microvascular muscularization, and upregulated ET-1, α-SMA and the active form of p38 MAPK (Thr180/Tyr182 phosphorylated, p38 MAPK-P). These findings support roles of the zinc regulation system in microvascular physiology and diseases.


Assuntos
Proteínas de Transporte de Cátions , Humanos , Proteínas de Transporte de Cátions/metabolismo , Zinco/metabolismo , Metalotioneína/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Cell Microbiol ; 23(12): e13395, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34619004

RESUMO

Zinc-dependent viral proteins rely on intracellular zinc homeostasis for successful completion of infectious life-cycle. Here, we report that the intracellular labile zinc levels were elevated at early stages of dengue virus (DENV) infection in hepatic cells and this increase in free zinc was abolished in cells infected with UV-inactivated virus or with a DENV replication inhibitor implicating a role for zinc homeostasis in viral RNA replication. This change in free zinc was mediated by zinc transporter, ZIP8, as siRNA-mediated knockdown of ZIP8 resulted in abrogation of increase in free zinc levels leading to significant reduction in DENV titers suggesting a crucial role for ZIP8 in early stages of DENV replication. Furthermore, elevated free zinc levels correlated with high copy numbers of dengue genome in peripheral blood leukocytes obtained from dengue patients compared to healthy controls suggesting a critical role for zinc homeostasis in dengue infection. TAKE AWAYS: Dengue virus utilises cellular zinc homeostasis during replication of its RNA. ZIP8 upregulates free zinc levels during dengue virus replication. Enhanced viremia associates with elevated intracellular free zinc in dengue.


Assuntos
Vírus da Dengue , Dengue , Linhagem Celular , Humanos , Replicação Viral , Zinco
11.
Cell Microbiol ; 23(1): e13268, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975847

RESUMO

Innate immune cells such as macrophages and neutrophils initiate protective inflammatory responses and engage antimicrobial responses to provide frontline defence against invading pathogens. These cells can both restrict the availability of certain transition metals that are essential for microbial growth and direct toxic concentrations of metals towards pathogens as antimicrobial responses. Zinc is important for the structure and function of many proteins, however excess zinc can be cytotoxic. In recent years, several studies have revealed that innate immune cells can deliver toxic concentrations of zinc to intracellular pathogens. In this review, we discuss the importance of zinc status during infectious disease and the evidence for zinc intoxication as an innate immune antimicrobial response. Evidence for pathogen subversion of this response is also examined. The likely mechanisms, including the involvement of specific zinc transporters that facilitate delivery of zinc by innate immune cells for metal ion poisoning of pathogens are also considered. Precise mechanisms by which excess levels of zinc can be toxic to microorganisms are then discussed, particularly in the context of synergy with other antimicrobial responses. Finally, we highlight key unanswered questions in this emerging field, which may offer new opportunities for exploiting innate immune responses for anti-infective development.


Assuntos
Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Imunidade Inata , Zinco/metabolismo , Zinco/farmacologia , Animais , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Transporte Biológico , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo
12.
J Pharmacol Sci ; 148(2): 221-228, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35063137

RESUMO

Zinc is an essential trace element that plays important roles in the regulation of various physiological responses in the body. Zinc deficiency is known to cause various health problems, including dysgeusia, skin disorders, and immune disorders. Therefore, the maintenance of healthy zinc content in the body is critical to our healthy life. Zinc homeostasis is tightly controlled by two of the solute carrier protein families SLC30A and SLC39A, called zinc transporters. In the last decade, research on zinc biology has made dramatic progress based on the physiological and functional analysis of zinc transporters in the fields of molecular biology, human genetics, and drug discovery. In particular, since the association between zinc transporters and human diseases was recently reported using human genetics and gene knockout mouse studies, zinc and zinc signals controlled by zinc transporters have been considered useful therapeutic targets. In this review, we introduce the importance of zinc homeostasis based on the findings of zinc transporter functions and their signals in relation to human diseases.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Terapia de Alvo Molecular , Zinco/metabolismo , Zinco/fisiologia , Animais , Homeostase , Humanos , Camundongos Knockout , Transdução de Sinais/fisiologia
13.
Biometals ; 35(5): 955-965, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35834148

RESUMO

This study is to examine the effects of single nucleotide polymorphisms (SNPs) of SLC30A and SLC39A on seminal plasma zinc concentration. Blood and seminal plasma samples were collected from outpatients. SNPs of zinc transporters were analyzed by next Generation sequencing technology, and seminal plasma zinc concentration were determined by inductively coupled plasma optical emission spectrometry. Our date showed nine SNPs (SLC30A8 rs2466295, rs2466294, SLC30A10 c.-160 C>G, SLC39A8 rs9331, rs9705, rs151392, rs151393, SLC39A11 rs9912126, SLC39A14 rs1051708) were significantly associated with seminal plasma zinc concentration, and 14 SNPs (SLC30A8 rs2466295, rs2466294, SLC30A10 c.-160 C>G, SLC39A6 rs148550301, SLC39A8 rs9331, rs9705, rs151392, rs151393, SLC39A11 rs9912126, rs61736066, rs36041371 and SLC39A14 rs1051708, rs76963096, rs17060854) were found to be significantly associated with total zinc per ejaculate. The seminal plasma zinc concentrations and total zinc per ejaculate were associated with the number of SNPs, and decreased significantly when five SNPs (SLC39A8 rs9331, rs9705, rs151392, rs151393 and SLC39A14 rs1051708) were a combination of homozygous genotype. Our findings suggest that different zinc transporter SNPs may significantly affect seminal plasma zinc levels.


Assuntos
Polimorfismo de Nucleotídeo Único , Sêmen , Proteínas de Transporte , Humanos , Polimorfismo de Nucleotídeo Único/genética , Zinco , Transportador 8 de Zinco/genética
14.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555806

RESUMO

Zinc is an important trace mineral in the human body and a daily intake of zinc is required to maintain a healthy status. Over the past decades, zinc has been used in formulating topical and systemic therapies for various skin disorders owing to its wound healing and antimicrobial properties. Zinc transporters play a major role in maintaining the integrity of the integumentary system by controlling zinc homeostasis within dermal layers. Mutations and abnormal function of zinc-transporting proteins can lead to disease development, such as spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and acrodermatitis enteropathica (AE) which can be fatal if left untreated. This review discusses the layers of the skin, the importance of zinc and zinc transporters in each layer, and the various skin disorders caused by zinc deficiency, in addition to zinc-containing compounds used for treating different skin disorders and skin protection.


Assuntos
Acrodermatite , Dermatologia , Dermatopatias , Humanos , Pele/metabolismo , Acrodermatite/tratamento farmacológico , Dermatopatias/metabolismo , Zinco/metabolismo
15.
Planta ; 253(6): 129, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34043068

RESUMO

MAIN CONCLUSION: This review highlights the most recent updated information available about Zn phytotoxicity at physiological, biochemical and molecular levels, uptake mechanisms as well as excess Zn homeostasis in plants. Zinc (Zn) is a natural component of soil in terrestrial environments and is a vital element for plant growth, as it performs imperative functions in numerous metabolic pathways. However, potentially noxious levels of Zn in soils can result in various alterations in plants like reduced growth, photosynthetic and respiratory rate, imbalanced mineral nutrition and enhanced generation of reactive oxygen species. Zn enters into soils through various sources, such as weathering of rocks, forest fires, volcanoes, mining and smelting activities, manure, sewage sludge and phosphatic fertilizers. The rising alarm in environmental facet, as well as, the narrow gap between Zn essentiality and toxicity in plants has drawn the attention of the scientific community to its effects on plants and crucial role in agricultural sustainability. Hence, this review focuses on the most recent updates about various physiological and biochemical functions perturbed by high levels of Zn, its mechanisms of uptake and transport as well as molecular aspects of surplus Zn homeostasis in plants. Moreover, this review attempts to understand the mechanisms of Zn toxicity in plants and to present novel perspectives intended to drive future investigations on the topic. The findings will further throw light on various mechanisms adopted by plants to cope with Zn stress which will be of great significance to breeders for enhancing tolerance to Zn contamination.


Assuntos
Metais Pesados , Poluentes do Solo , Plantas , Solo , Poluentes do Solo/toxicidade , Zinco/toxicidade
16.
Mol Cell Biochem ; 476(2): 971-989, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33225416

RESUMO

An important energy supplier of cardiomyocytes is mitochondria, similar to other mammalian cells. Studies have demonstrated that any defect in the normal processes controlled by mitochondria can lead to abnormal ROS production, thereby high oxidative stress as well as lack of ATP. Taken into consideration, the relationship between mitochondrial dysfunction and overproduction of ROS as well as the relation between increased ROS and high-level release of intracellular labile Zn2+, those bring into consideration the importance of the events related with those stimuli in cardiomyocytes responsible from cellular Zn2+-homeostasis and responsible Zn2+-transporters associated with the Zn2+-homeostasis and Zn2+-signaling. Zn2+-signaling, controlled by cellular Zn2+-homeostatic mechanisms, is regulated with intracellular labile Zn2+ levels, which are controlled, especially, with the two Zn2+-transporter families; ZIPs and ZnTs. Our experimental studies in mammalian cardiomyocytes and human heart tissue showed that Zn2+-transporters localizes to mitochondria besides sarco(endo)plasmic reticulum and Golgi under physiological condition. The protein levels as well as functions of those transporters can re-distribute under pathological conditions, therefore, they can interplay among organelles in cardiomyocytes to adjust a proper intracellular labile Zn2+ level. In the present review, we aimed to summarize the already known Zn2+-transporters localize to mitochondria and function to stabilize not only the cellular Zn2+ level but also cellular oxidative stress status. In conclusion, one can propose that a detailed understanding of cellular Zn2+-homeostasis and Zn2+-signaling through mitochondria may emphasize the importance of new mitochondria-targeting agents for prevention and/or therapy of cardiovascular dysfunction in humans.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/fisiologia , Zinco/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo
17.
Mol Cell Biochem ; 476(7): 2703-2718, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666829

RESUMO

The zinc transporter 8 (ZnT8) plays an essential role in zinc homeostasis inside pancreatic ß cells, its function is related to the stabilization of insulin hexameric form. Genome-wide association studies (GWAS) have established a positive and negative relationship of ZnT8 variants with type 2 diabetes mellitus (T2DM), exposing a dual and controversial role. The first hypotheses about its role in T2DM indicated a higher risk of developing T2DM for loss of function; nevertheless, recent GWAS of ZnT8 loss-of-function mutations in humans have shown protection against T2DM. With regard to the ZnT8 role in T2DM, most studies have focused on rodent models and common high-risk variants; however, considerable differences between human and rodent models have been found and the new approaches have included lower-frequency variants as a tool to clarify gene functions, allowing a better understanding of the disease and offering possible therapeutic targets. Therefore, this review will discuss the physiological effects of the ZnT8 variants associated with a major and lower risk of T2DM, emphasizing the low- and rare-frequency variants.


Assuntos
Diabetes Mellitus Tipo 2 , Transportador 8 de Zinco , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Transportador 8 de Zinco/deficiência , Transportador 8 de Zinco/metabolismo
18.
Acta Pharmacol Sin ; 42(3): 340-346, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32284539

RESUMO

Cadmium (Cd) is an important environmental pollutant and long-term Cd exposure is closely related to autoimmune diseases, cancer, cardiovascular diseases (CVD), and hepatic dysfunction. Zinc (Zn) is an essential metal that plays key roles in protein structure, catalysis, and regulation of their function. Numerous studies have shown that Zn can reduce Cd toxicity; however, the underlying mechanisms have not been extensively explored. Preclinical studies have revealed direct competition for sarcolemmal uptake between these two metals. Multiple sarcolemmal transporters participate in Cd uptake, including Zn transporters, calcium channels, and DMT1 (divalent metal transporter 1). Zn also induces several protective mechanisms, including MT (metallothionein) induction and favorable redox homeostasis. This review summarizes current knowledge related to the role of Zn and metal transporters in reducing Cd toxicity and discusses potential future directions of related research.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Zinco/metabolismo , Zinco/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Humanos , Metalotioneína/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Biochemistry (Mosc) ; 86(2): 168-178, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33832415

RESUMO

Monocytes and muscles demonstrate functionally contrasting behavior under conditions of zinc deficiency with relation to zinc storage system (muscle retain zinc in contrast to monocytes). We aimed to understand the effects of zinc status and HIV-1 Tat mediated inflammation on expression of zinc transporters in these types of cells. Expression of zinc transporters [ZnTs, ZIPs, and metallothionein (MT)] was quantified by qRT-PCR in RD, THP-1 cells separately and in co-cultured THP-1-RD cells. ZnT1 protein expression levels were confirmed by Western blot. Significant increase of MT and ZnT1 mRNA in response to zinc supplementation and decrease during zinc deficiency indicates significance of the genes encoding transporters in maintaining zinc homeostasis in these tissues. In the RD cells ZIP10 exhibited inverse relation to zinc status whereas no correlation was found in the THP-1 cells. Tat-induced inflammation resulted in the significant elevation of MT, IL6, ZIP7, ZIP8, ZIP9 transcripts in the co-cultured RD cells, whereas THP-1 cells demonstrated increased IL-1ß levels and reduced levels of ZIP7 and ZIP14. Zinc status and HIV-1Tat induced inflammation appear to influence differential expression of MT, ZnTs, and ZIPs in the muscle and monocyte cells.


Assuntos
Proteínas de Transporte de Cátions/genética , Inflamação , Monócitos/metabolismo , Músculos/metabolismo , Zinco/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , HIV-1 , Humanos , Metalotioneína/genética , Monócitos/virologia , Músculos/virologia , RNA Mensageiro , Células THP-1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana
20.
Br J Nutr ; 124(8): 773-784, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32410717

RESUMO

The present study evaluated the effects of dietary Zn level on growth performance, serum and hepatopancreas metabolites, expression of genes involved in lipid and energy metabolism, and the signalling pathway of dietary Zn-induced lipolysis. Five isonitrogenous and isolipidic diets were formulated to contain different Zn levels: 46·4 (basal diet), 77·2, 87·0, 117·1 and 136·8 mg/kg, respectively. The results indicated that shrimp fed the diet containing Zn at 117·1 mg/kg had higher weight gain and specific growth rate, and the lowest feed intake and feed conversion rate, than shrimp fed the other diets. The deposition rate of Zn in whole body significantly decreased with increasing dietary Zn level. Dietary Zn prevented the accumulation of free radicals and improved antioxidant activities by increasing Cu/Zn superoxide dismutase and reducing malondialdehyde in hepatopancreas. Dietary Zn supplementation enhanced lipase activity and adiponectin, which could promote TAG breakdown and fatty acid oxidation and lead to reduced lipid in hepatopancreas. The mRNA expressions of ob-rb, adipor, camkkß, ampk, cd36, mcd and cpt1 involved in Zn-induced lipid catabolism were up-regulated, and the expressions of srebp, acc, fas and scd1 were down-regulated. The mRNA levels of SLC39 family genes (zip3, zip9, zip11 and zip14) in hepatopancreas were up-regulated with increasing dietary Zn level. The results demonstrated that dietary Zn level could significantly affect growth performance, tissue deposition of Zn, lipid metabolites and expression of genes involved in lipogenesis and lipolysis in Litopenaeus vannamei.


Assuntos
Ração Animal/análise , Suplementos Nutricionais , Lipólise/efeitos dos fármacos , Penaeidae/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Zinco/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Dieta/métodos , Hepatopâncreas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Oxirredução/efeitos dos fármacos , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa