Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Neurobiol Dis ; 191: 106407, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199272

RESUMO

Spreading depolarizations (SDs) are profound waves of neuroglial depolarization that can propagate repetitively through injured brain. Recent clinical work has established SD as an important contributor to expansion of acute brain injuries and have begun to extend SD studies into other neurological disorders. A critical challenge is to determine how to selectively prevent deleterious consequences of SD. In the present study, we determined whether a wave of profound Zn2+ release is a key contributor to deleterious consequences of SD, and whether this can be targeted pharmacologically. Focal KCl microinjection was used to initiate SD in the CA1 region of the hippocampus in murine brain slices. An extracellular Zn2+ chelator with rapid kinetics (ZX1) increased SD propagation rates and improved recovery of extracellular DC potential shifts. Under conditions of metabolic compromise, tissues showed sustained impairment of functional and structural recovery following a single SD. ZX1 effectively improved recovery of synaptic potentials and intrinsic optical signals in these vulnerable conditions. Fluorescence imaging and genetic deletion of a presynaptic Zn2+ transporter confirmed synaptic release as the primary contributor to extracellular accumulation and deleterious consequences of Zn2+ during SD. These results demonstrate a role for synaptic Zn2+ release in deleterious consequences of SD and show that targeted extracellular chelation could be useful for disorders where repetitive SD enlarges infarcts in injured tissues.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Hipocampo , Camundongos , Animais , Hipocampo/metabolismo , Proteínas de Membrana Transportadoras , Quelantes , Neuroglia/metabolismo , Zinco/metabolismo
2.
J Reprod Dev ; 70(5): 338-342, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39048372

RESUMO

Zinc is an essential trace element for various physiological functions, including reproduction. The influx/efflux of zinc ions is regulated by zinc transporters (Zip1-14 and ZnT1-8, 10). However, the precise roles of zinc transporters and zinc dynamics in reproductive functions are unknown. In this study, ZnT3/Slc30a3 gene knockout (KO) mice were used to analyze the role of ZnT3. In ZnT3 KO mice, intracellular zinc ions in oocytes/zygotes were significantly reduced compared to those in controls, and free zinc ions did not accumulate in the oocyte cytoplasm. However, fertilization of these oocytes and the average litter size were comparable to those of control mice. Our results suggest that ZnT3 plays an important role in the accumulation of zinc ions in oocytes but not in the developmental ability of mice. ZnT3 KO mice will be useful for examining zinc dynamics in oocytes and other tissues.


Assuntos
Proteínas de Transporte de Cátions , Camundongos Knockout , Oócitos , Zinco , Animais , Oócitos/metabolismo , Zinco/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Camundongos , Feminino , Masculino , Tamanho da Ninhada de Vivíparos
3.
Int J Mol Sci ; 21(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012946

RESUMO

Metals are critical cellular elements that are involved in a variety of cellular processes, with recent literature demonstrating that zinc, and the synaptic zinc transporter (ZnT3), are specifically involved in learning and memory and may also be key players in age-related neurodegenerative disorders such as Alzheimer's disease. Whilst the cellular content and location of metals is critical, recent data has demonstrated that the metalation state of proteins is a determinant of protein function and potential toxicity. As we have previously reported that ZnT3 knockout (KO) mice have deficits in total zinc levels at both 3 and 6 months of age, we were interested in whether there might be changes in the metalloproteomic profile in these animals. To do this, we utilised size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS) and examined hippocampal homogenates from ZnT3 KO and age-matched wild-type mice at 3, 6 and 18 months of age. Our data suggest that there are alterations in specific metal binding proteins, for zinc, copper and iron all being modulated in the ZnT3 KO mice compared to wild-type (WT). These data suggest that ZnT3 KO mice may have impairments in the levels or localisation of multiple transition metals, and that copper- and iron-dependent cellular pathways may also be impacted in these mice.


Assuntos
Envelhecimento/metabolismo , Proteínas de Transporte de Cátions/genética , Metaloproteínas/metabolismo , Proteômica/métodos , Envelhecimento/genética , Animais , Cromatografia em Gel , Cobre/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Ferro/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Zinco/metabolismo
4.
J Cell Physiol ; 234(9): 15872-15884, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30714133

RESUMO

The present study examined the involvement of zinc (Zn)-transporters (ZnT3) in cadmium (Cd)-induced alterations of Zn homeostasis in rat hippocampal neurons. We treated primary rat hippocampal neurons for 24 or 48 hr with various concentrations of CdCl2 (0, 0.5, 5, 10, 25, or 50 µM) and/or ZnCl 2 (0, 10, 30, 50, 70, or 90 µM), using normal neuronal medium as control. By The CellTiter 96 ® Aqueous One Solution Cell Proliferation Assay (MTS; Promega, Madison, WI) assay and immunohistochemistry for cell death markers, 10 and 25 µM of Cd were found to be noncytotoxic doses, and both 30 and 90 µM of Zn as the best concentrations for cell proliferation. We tested these selected doses. Cd, at concentrations of 10 or 25 µM (and depending on the absence or presence of Zn), decreased the percentage of surviving cells. Cd-induced neuronal death was either apoptotic or necrotic depending on dose, as indicated by 7-AAD and/or annexin V labeling. At the molecular level, Cd exposure induced a decrease in hippocampal brain-derived neurotrophic factor-tropomyosin receptor kinase B (BDNF-TrkB) and Erk1/2 signaling, a significant downregulation of the expression of learning- and memory-related receptors and synaptic proteins such as the NMDAR NR2A subunit and PSD-95, as well as the expression of the synapse-specific vesicular Zn transporter ZnT3 in cultured hippocampal neurons. Zn supplementation, especially at the 30 µM concentration, led to partial or total protection against Cd neurotoxicity both with respect to the number of apoptotic cells and the expression of several genes. Interestingly, after knockdown of ZnT3 by small interfering RNA transfection, we did not find the restoration of the expression of this gene following Zn supplementation at 30 µM concentration. These data indicate the involvement of ZnT3 in the mechanism of Cd-induced hippocampal neurotoxicity.

5.
Traffic ; 17(3): 267-88, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26728129

RESUMO

The solute carrier 30A (SLC30A) family of zinc exporters transports zinc into the lumen of intracellular organelles in order to prevent zinc toxicity. We reported that formation of tyrosine dimers is required for ZnT3 (zinc transporter 3) zinc transport activity and targeting to synaptic-like microvesicles (SLMVs) in PC12 cells and the formation of ZnT3/ZnT10 heterodimers. Here, we focused on ZnT10 to determine the role of heterodimerization in the sorting of ZnTs in the endolysosomal pathway. Using cell fractionation, immunoprecipitation and immunofluorescence approaches, we found that ZnT10 resides in transferrin receptor and Rab5-positive endosomes and forms covalent heterodimers and oligomers with ZnT2, ZnT3 and ZnT4. The interaction of ZnT10 with ZnT3, mediated by dityrosine bonds, was unable to target ZnT10 into SLMVs in vitro or into synaptic vesicles isolated from mouse brain in vivo. However, ZnT3/ZnT10 heterodimers regulate epidermal growth factor receptor (EGF-R) signaling by increasing the phosphorylation of mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK1/2), but not EGF-R, C-Raf or Akt phosphorylation in response to EGF. Further, mutation of tyrosine 4 in ZnT10 reduced ZnT3/ZnT10 dityrosine-mediated heterodimerization and zinc transport, as well as MEK and ERK1/2 phosphorylation, which were also reduced by the zinc chelator TPEN. Phosphorylation of these kinases is likely to occur in the cytosol as no differences in phosphorylation were observed in membrane fractions of control and ZnT3/ZnT10-expressing cells. We propose that ZnT10 plays a role in signal transduction, which is mediated by homo and heterodimerization with other ZnTs.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Endossomos/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células PC12 , Multimerização Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Vesículas Sinápticas/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(51): 15749-54, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26647187

RESUMO

The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.


Assuntos
Receptores de AMPA/antagonistas & inibidores , Transmissão Sináptica , Zinco/fisiologia , Animais , Núcleo Coclear/fisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Plasticidade Neuronal , Receptores de AMPA/fisiologia
7.
Int J Mol Sci ; 19(5)2018 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-29710840

RESUMO

Aging is the major risk factor in the development of cardiovascular diseases (CVDs), including hypertension, atherosclerosis, and myocardial infarction. Oxidative stress caused by overproduction of reactive oxygen species (ROS) and/or by reduced expression of antioxidant enzymes is a major contributor to the progression of vascular senescence, pathologic remodeling of the vascular wall, and disease. Both oxidative stress and inflammation promote the development of senescence, a process by which cells stop proliferating and become dysfunctional. This review focuses on the role of the mitochondria and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases Nox1 and Nox4 in vascular senescence, and their contribution to the development of atherosclerosis. Recent findings are reviewed, supporting a critical role of the mitochondrial regulator peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1α (PGC-1α), the inflammatory gene nuclear factor κB (NF-κB), zinc, the zinc transporters (ZnTs) ZnT3 and ZnT10, and angiotensin II (Ang II) in mitochondrial function, and their role in telomere stability, which provides new mechanistic insights into a previously proposed unified theory of aging.


Assuntos
Aterosclerose/metabolismo , Vasos Sanguíneos/crescimento & desenvolvimento , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Animais , Aterosclerose/etiologia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Senescência Celular , Humanos , Estresse Oxidativo
8.
Int J Mol Sci ; 18(10)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048371

RESUMO

Our previous study demonstrated that colchicine-induced dentate granule cell death is caused by blocking axonal flow and the accumulation of intracellular zinc. Zinc is concentrated in the synaptic vesicles via zinc transporter 3 (ZnT3), which facilitates zinc transport from the cytosol into the synaptic vesicles. The aim of the present study was to identify the role of ZnT3 gene deletion on colchicine-induced dentate granule cell death. The present study used young (3-5 months) mice of the wild-type (WT) or the ZnT3-/- genotype. Colchicine (10 µg/kg) was injected into the hippocampus, and then brain sections were evaluated 12 or 24 h later. Cell death was evaluated by Fluoro-Jade B; oxidative stress was analyzed by 4-hydroxy-2-nonenal; and dendritic damage was detected by microtubule-associated protein 2. Zinc accumulation was detected by N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) staining. Here, we found that ZnT3-/- reduced the number of degenerating cells after colchicine injection. The ZnT3-/--mediated inhibition of cell death was accompanied by suppression of oxidative injury, dendritic damage and zinc accumulation. In addition, ZnT3-/- mice showed more glutathione content than WT mice and inhibited neuronal glutathione depletion by colchicine. These findings suggest that increased neuronal glutathione by ZnT3 gene deletion prevents colchicine-induced dentate granule cell death.


Assuntos
Proteínas de Transporte/genética , Giro Denteado/metabolismo , Deleção de Genes , Proteínas de Membrana/genética , Neurônios/metabolismo , Animais , Transporte Axonal , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions , Morte Celular , Colchicina/toxicidade , Giro Denteado/citologia , Giro Denteado/efeitos dos fármacos , Glutationa/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Zinco/metabolismo
9.
Int J Mol Sci ; 18(2)2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178198

RESUMO

Zinc transporter 3 (ZnT3) is a member of the solute-linked carrier 30 (SLC 30) zinc transporter family. It is closely linked to the nervous system, where it takes part in the transport of zinc ions from the cytoplasm to the synaptic vesicles. ZnT3 has also been observed in the enteric nervous system (ENS), but its reactions in response to pathological factors remain unknown. This study, based on the triple immunofluorescence technique, describes changes in ZnT3-like immunoreactive (ZnT3-LI) enteric neurons in the porcine ileum, caused by chemically-induced inflammation. The inflammatory process led to a clear increase in the percentage of neurons immunoreactive to ZnT3 in all "kinds" of intramural enteric plexuses, i.e., myenteric (MP), outer submucous (OSP) and inner submucous (ISP) plexuses. Moreover, a wide range of other active substances was noted in ZnT3-LI neurons under physiological and pathological conditions, and changes in neurochemical characterisation of ZnT3⁺ cells in response to inflammation depended on the "kind" of enteric plexus. The obtained results show that ZnT3 is present in the ENS in a relatively numerous and diversified neuronal population, not only in physiological conditions, but also during inflammation. The reasons for the observed changes are not clear; they may be connected with the functions of zinc ions and their homeostasis disturbances in pathological processes. On the other hand, they may be due to adaptive and/or neuroprotective processes within the pathologically altered gastrointestinal tract.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Sistema Nervoso Entérico/fisiologia , Ileíte/genética , Ileíte/metabolismo , Íleo/fisiologia , Animais , Proteínas de Transporte de Cátions/genética , Neurônios Colinérgicos/metabolismo , Modelos Animais de Doenças , Ileíte/patologia , Plexo Submucoso/fisiologia , Suínos , Transmissão Sináptica
10.
Biometals ; 29(2): 287-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26867900

RESUMO

Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage in the granules whereas ZNT3 knockout negatively affects beta cell function and survival. Here, we describe for the first time the sub-cellular localization of ZNT3 by immuno-gold electron microscopy and supplement previous data from knockout experiments with investigations of the effect of ZNT3 in a pancreatic beta cell line, INS-1E overexpressing ZNT3. In INS-1E cells, we found that ZNT3 was abundant in insulin containing granules located close to the plasma membrane. The level of ZNT8 mRNA was significantly decreased upon over-expression of ZNT3 at different glucose concentrations (5, 11 and 21 mM glucose). ZNT3 over-expression decreased insulin content and insulin secretion whereas ZNT3 over-expression improved the cell survival after 24 h at varying glucose concentrations (5, 11 and 21 mM). Our data suggest that ZNT3 and ZNT8 (known to regulate insulin secretion) have opposite effects on insulin synthesis and secretion possibly by a transcriptional co-regulation since mRNA expression of ZNT3 was inversely correlated to ZNT8 and ZNT3 over-expression reduced insulin synthesis and secretion in INS-1E cells. ZNT3 over-expression improved cell survival.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Sobrevivência Celular , Expressão Gênica , Humanos , Secreção de Insulina , Fatores de Proteção , Transporte Proteico , Ratos , Transportador 8 de Zinco
11.
Neurobiol Dis ; 81: 196-202, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25549871

RESUMO

Zinc transporter-3 (ZnT3) protein is responsible for loading zinc into presynaptic vesicles and consequently controls the availability of zinc at the glutamatergic synapse. ZnT3 has been shown to decline with age and in Alzheimer's disease (AD) and is crucially involved in learning and memory. In this study, we utilised whole animal behavioural analyses in the ZnT3 KO mouse line, together with electrophysiological analysis of long-term potentiation in brain slices from ZnT3 KO mice, to show that metal chaperones (clioquinol, 30 mg/kg/day for 6weeks) can prevent the age-dependent cognitive phenotype that characterises these animals. This likely occurs as a result of a homeostatic restoration of synaptic protein expression, as clioquinol significantly restored levels of various pre- and postsynaptic proteins that are critical for normal cognition, including PSD-95; AMPAR and NMDAR2b. We hypothesised that this clioquinol-mediated restoration of synaptic health resulted from a selective increase in synaptic zinc content within the hippocampus. While we demonstrated a small regional increase in hippocampal zinc content using synchrotron x-ray fluorescence microscopy, further sub-region analyses are required to determine whether this effect is seen in other regions of the hippocampal formation that are more closely linked to the synaptic plasticity effects observed in this study. These data support our recent report on the use of a different metal chaperone (PBT2) to prevent normal age-related cognitive decline and demonstrate that metal chaperones are efficacious in preventing the zinc-mediated cognitive decline that characterises ageing and disease.


Assuntos
Clioquinol/análogos & derivados , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/metabolismo , Zinco/metabolismo , Análise de Variância , Animais , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions , Clioquinol/administração & dosagem , Clioquinol/uso terapêutico , Transtornos Cognitivos/genética , Modelos Animais de Doenças , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp
12.
Int J Mol Sci ; 16(7): 15800-10, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26184176

RESUMO

Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.


Assuntos
Proteínas de Transporte/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Animais , Calmodulina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions , Suplementos Nutricionais , Ácidos Graxos/análise , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima/efeitos dos fármacos , alfa-Sinucleína/metabolismo
13.
Adv Sci (Weinh) ; : e2403405, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258564

RESUMO

Obesity, a growing global health concern, is closely linked to depression. However, the neural mechanism of association between obesity and depression remains poorly understood. In this study, neural-specific WFS1 deficiency exacerbates the vicious cycle of obesity and depression in mice fed a high-fat diet (HFD), positioning WFS1 as a crucial factor in this cycle. Through human pluripotent stem cells (hESCs) neural differentiation, it is demonstrated that WFS1 regulates Zn2+ homeostasis and the apoptosis of neural progenitor cells (NPCs) and cerebral organoids by inhibiting the zinc transporter ZnT3 under the situation of dysregulated lipid metabolism. Notably, riluzole regulates ZnT3 expression to maintain zinc homeostasis and protect NPCs from lipotoxicity-induced cell death. Importantly, riluzole, a therapeutic molecule targeting the nervous system, in vivo administration prevents HFD-induced obesity and associated depression. Thus, a WFS1-ZnT3-Zn2+ axis critical is demonstrated for the vicious cycle of obesity and depression and that riluzole may have the potential to reverse this process against obesity and depression.

14.
Front Mol Neurosci ; 17: 1375925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807922

RESUMO

Zinc transporter 3 (ZnT3) is abundantly expressed in the brain, residing in synaptic vesicles, where it plays important roles in controlling the luminal zinc levels. In this study, we found that ZnT3 knockout in mice decreased zinc levels in the hippocampus and cortex, and was associated with progressive cognitive impairments, assessed at 2, 6, and 9-month of age. The results of Golgi-Cox staining demonstrated that ZnT3 deficiency was associated with an increase in dendritic complexity and a decrease in the density of mature dendritic spines, indicating potential synaptic plasticity deficit. Since ZnT3 deficiency was previously linked to glucose metabolism abnormalities, we tested the expression levels of genes related to insulin signaling pathway in the hippocampus and cortex. We found that the Expression of glucose transporters, GLUT3, GLUT4, and the insulin receptor in the whole tissue and synaptosome fraction of the hippocampus of the ZnT3 knockout mice were significantly reduced, as compared to wild-type controls. Expression of AKT (A serine/threonine protein kinase) and insulin-induced AKT phosphorylation was also reduced in the hippocampus of ZnT3 knockout mice. We hypothesize that the ZnT3 deficiency and reduced brain zinc levels may cause cognitive impairment by negatively affecting glycose metabolism via decreased expression of key components of insulin signaling, as well as via changes in synaptic plasticity. These finding may provide new therapeutic target for treatments of neurodegenerative disorders.

15.
bioRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961648

RESUMO

Spreading depolarizations (SDs) are profound waves of neuroglial depolarization that can propagate repetitively through injured brain. Recent clinical work has established SD as an important contributor to expansion of acute brain injuries and have begun to extend SD studies into other neurological disorders. A critical challenge is to determine how to selectively prevent deleterious consequences of SD. In the present study, we determined whether a wave of profound Zn2+ release is a key contributor to deleterious consequences of SD, and whether this can be targeted pharmacologically. Focal KCl microinjection was used to initiate SD in the CA1 region of the hippocampus in murine brain slices. An extracellular Zn2+ chelator with rapid kinetics (ZX-1) increased SD propagation rates and improved recovery of extracellular DC potential shifts. Under conditions of metabolic compromise, tissues showed sustained impairment of functional and structural recovery following a single SD. ZX-1 effectively improved recovery of synaptic potentials and intrinsic optical signals in these vulnerable conditions. Fluorescence imaging and genetic deletion of a presynaptic Zn2+ transporter confirmed synaptic release as the primary contributor to extracellular accumulation and deleterious consequences of Zn2+ during SD. These results demonstrate a role for synaptic Zn2+ release in deleterious consequences of SD and show that targeted extracellular chelation could be useful for disorders where repetitive SD enlarges infarcts in injured tissues.

16.
Brain Commun ; 5(1): fcad001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687391

RESUMO

Synaptic dysfunction is an early event in Alzheimer's disease. Post-mortem studies suggest that alterations in synaptic proteins are associated with cognitive decline in Alzheimer's disease. We measured the concentration of three synaptic proteins, zinc transporter protein 3, dynamin1 and AMPA glutamate receptor 3 in cerebrospinal fluid of subjects with mild cognitive impairment (n = 18) and Alzheimer's disease (n = 18) and compared the levels to cognitively and neurologically healthy controls (n = 18) by using ELISA assay. In addition, we aimed to assess the translational potential of these synaptic proteins in two established amyloid precursor protein knock-in Alzheimer's disease mouse models by assessing the cerebrospinal fluid, hippocampal and cortical synaptic protein concentrations. Using ELISA, we measured in parallel these three proteins in cerebrospinal fluid and/or brain of 12- and 24-month-old AppNL-F and AppNL-G-F knock-in mice and AppWt control mice. The regional distribution and expression of these proteins were explored upon aging of the App knock-in models by quantitative immunofluorescence microscopy. Notably, we found a significant increase in concentrations of zinc transporter protein 3 and AMPA glutamate receptor 3 in cerebrospinal fluid of both patient groups compared with cognitively healthy controls. Dynamin1 concentration was significantly higher in Alzheimer's disease patients. Remarkably, patients with mild cognitive impairment who converted to Alzheimer's disease (n = 7) within 2 years exhibited elevated baseline cerebrospinal fluid zinc transporter protein 3 concentrations compared with mild cognitive impairment patients who did not convert (n = 11). Interestingly, similar to the alterations in Alzheimer's disease subjects, cerebrospinal fluid AMPA glutamate receptor 3 concentration was significantly higher in AppNL-G-F knock-in mice when compared with wild-type controls. Furthermore, we have detected age and brain regional specific changes of the three synaptic proteins in the hippocampus and prefrontal cortex of both AppNL-F and AppNL-G-F knock-in mice. Notably, all the three cerebrospinal fluid synaptic protein concentrations correlated negatively with concentrations in hippocampal lysates. The elevated zinc transporter protein 3 concentrations in the cerebrospinal fluid of converter versus non-converter mild cognitive impairment patients suggests a prospective role of zinc transporter 3 in differentiating dementia patients of the biological continuum of Alzheimer's disease. The increased cerebrospinal fluid concentrations of synaptic proteins in both patient groups, potentially reflecting synaptic alterations in the brain, were similarly observed in the amyloid precursor protein knock-in mouse models highlighting the translational potential of these proteins as markers for synaptic alterations. These synaptic markers could potentially help reduce the current disparities between human and animal model-based studies aiding the translation of preclinical discoveries of pathophysiological changes into clinical research.

17.
Cell Rep ; 42(8): 112932, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37585291

RESUMO

Synaptic zinc signaling modulates synaptic activity and is present in specific populations of cortical neurons, suggesting that synaptic zinc contributes to the diversity of intracortical synaptic microcircuits and their functional specificity. To understand the role of zinc signaling in the cortex, we performed whole-cell patch-clamp recordings from intratelencephalic (IT)-type neurons and pyramidal tract (PT)-type neurons in layer 5 of the mouse auditory cortex during optogenetic stimulation of specific classes of presynaptic neurons. Our results show that synaptic zinc potentiates AMPA receptor (AMPAR) function in a synapse-specific manner. We performed in vivo 2-photon calcium imaging of the same classes of neurons in awake mice and found that changes in synaptic zinc can widen or sharpen the sound-frequency tuning bandwidth of IT-type neurons but only widen the tuning bandwidth of PT-type neurons. These results provide evidence for synapse- and cell-type-specific actions of synaptic zinc in the cortex.


Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/fisiologia , Receptores de AMPA/metabolismo , Zinco , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
18.
Biochem Biophys Rep ; 32: 101362, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36204728

RESUMO

Recently, we reported that TMEM163 is a zinc efflux transporter that likely belongs to the mammalian solute carrier 30 (Slc30/ZnT) subfamily of the cation diffusion facilitator (CDF) protein superfamily. We hypothesized that human TMEM163 forms functional heterodimers with certain ZNT proteins based on their overlapping subcellular localization with TMEM163 and previous reports that some ZNT monomers interact with each other. In this study, we heterologously expressed individual constructs with a unique peptide tag containing TMEM163, ZNT1, ZNT2, ZNT3, and ZNT4 (negative control) or co-expressed TMEM163 with each ZNT in cultured cells for co-immunoprecipitation (co-IP) experiments. We also co-expressed TMEM163 with two different peptide tags as a positive co-IP control. Western blot analyses revealed that TMEM163 dimerizes with itself but that it also heterodimerizes with ZNT1, ZNT2, ZNT3, and ZNT4 proteins. Confocal microscopy revealed that TMEM163 and ZNT proteins partially co-localize in cells, suggesting that they exist as homodimers and heterodimers in their respective subcellular sites. Functional zinc flux assays using Fluozin-3 and Newport Green dyes show that TMEM163/ZNT heterodimers exhibit similar efflux function as TMEM163 homodimers. Cell surface biotinylation revealed that the plasma membrane localization of TMEM163 is not markedly influenced by ZNT co-expression. Overall, our results show that the interaction between TMEM163 and distinct ZNT proteins is physiologically relevant and that their heterodimerization may serve to increase the functional diversity of zinc effluxers within specific tissues or cell types.

19.
Front Neurol ; 13: 882635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36742045

RESUMO

Vesicular Zn2+ (zinc) is released at synapses and has been demonstrated to modulate neuronal responses. However, mechanisms through which dysregulation of zinc homeostasis may potentiate neuronal dysfunction and neurodegeneration are not well-understood. We previously reported that accumulation of soluble amyloid beta oligomers (AßO) at synapses correlates with synaptic loss and that AßO localization at synapses is regulated by synaptic activity and enhanced by the release of vesicular Zn2+ in the hippocampus, a brain region that deteriorates early in Alzheimer's disease (AD). Significantly, drugs regulating zinc homeostasis inhibit AßO accumulation and improve cognition in mouse models of AD. We used both sexes of a transgenic mouse model lacking synaptic Zn2+ (ZnT3KO) that develops AD-like cognitive impairment and neurodegeneration to study the effects of disruption of Zn2+ modulation of neurotransmission in cognition, protein expression and activation, and neuronal excitability. Here we report that the genetic removal of synaptic Zn2+ results in progressive impairment of hippocampal-dependent memory, reduces activity-dependent increase in Erk phosphorylation and BDNF mRNA, alters regulation of Erk activation by NMDAR subunits, increases neuronal spiking, and induces biochemical and morphological alterations consistent with increasing epileptiform activity and neurodegeneration as ZnT3KO mice age. Our study shows that disruption of synaptic Zn2+ triggers neurodegenerative processes and is a potential pathway through which AßO trigger altered expression of neurotrophic proteins, along with reduced hippocampal synaptic density and degenerating neurons, neuronal spiking activity, and cognitive impairment and supports efforts to develop therapeutics to preserve synaptic zinc homeostasis in the brain as potential treatments for AD.

20.
Front Behav Neurosci ; 16: 769322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273483

RESUMO

Zinc is important in neural and synaptic development and neuronal transmission. Within the brain, zinc transporter 3 (ZnT3) is essential for zinc uptake into vesicles. Loss of vesicular zinc has been shown to produce neurodevelopmental disorder (NDD)-like behavior, such as decreased social interaction and increased anxiety- and repetitive-like behavior. Maternal immune activation (MIA) has been identified as an environmental factor for NDDs, such as autism spectrum disorders (ASDs) and schizophrenia (SZ), in offspring, which occurs during pregnancy when the mother's immune system reacts to the exposure to viruses or infectious diseases. In this study, we investigated the interaction effect of a genetic factor [ZnT3 knockout (KO) mice] and an environmental factor (MIA). We induced MIA in pregnant female (dams) mice during mid-gestation, using polyinosinic:polycytidylic acid (polyI:C), which mimics a viral infection. Male and female ZnT3 KO and wild-type (WT) offspring were tested in five behavioral paradigms: Ultrasonic Vocalizations (USVs) at postnatal day 9 (P9), Open Field Test, Marble Burying Test, three-Chamber Social Test, and Pre-pulse Inhibition (PPI) in adulthood (P60-75). Our results indicate that loss of vesicular zinc does not result in enhanced ASD- and SZ-like phenotype compared to WT, nor does it show a more pronounced phenotype in male ZnT3 KO compared to female ZnT3 KO. Finally, MIA offspring demonstrated an ASD- and SZ-like phenotype only in specific behavioral tests: increased calls emitted in USVs and fewer marbles buried. Our results suggest that there is no interaction between the loss of vesicular zinc and MIA induction in the susceptibility to developing an ASD- and SZ-like phenotype.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa