Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 261: 119752, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117053

RESUMO

The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has caused substantial declines in Bd-susceptible amphibian species worldwide. However, some populations of Bd-susceptible frogs have managed to survive at existing metal-polluted sites, giving rise to the hypothesis that frogs might persist in the presence of Bd if Bd is inhibited by metals at concentrations that frogs can tolerate. We tested this hypothesis by measuring the survival of Bd zoospores, the life stage that infects amphibians, and calculated the LC50 after exposure to environmentally-relevant elevated concentrations of copper (Cu), zinc (Zn), and their combination (Cu + Zn) in two repeated 4-day acute exposure runs. We also measured the chronic sensitivity of Bd to these metals over three generations by measuring the number of colonies and live zoospores and calculating EC50 concentrations after 42 days of exposure. We then compared acute and chronic sensitivity of Bd with amphibian sensitivities by constructing species sensitivity distributions (SSDs) using LC50 and EC50 data obtained from the literature. Acute sensitivity data showed that Bd zoospore survival decreased with increasing metal concentrations and exposure durations relative to the control, with the highest LC50 values for Cu and Zn being 2.5 µg/L and 250 µg/L, respectively. Chronic exposures to metals resulted in decreased numbers of Bd colonies and live zoospores after 42 days, with EC50 values of 0.75 µg/L and 1.19 µg/L for Cu and Zn, respectively. Bd zoospore survival was 10 and 8 times more sensitive to Cu and Zn, respectively in acute, and 2 and 5 times more sensitive to Cu and Zn in chronic exposure experiments than the most sensitive amphibian species recorded. Our findings are consistent with the hypothesis that metals in existing metal-polluted sites may have a greater impact on Bd relative to amphibians' performance, potentially enabling Bd-susceptible amphibians to persist with Bd at these sites.

2.
Plants (Basel) ; 10(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34579349

RESUMO

As the use of chemical fungicides has raised environmental concerns, biological control agents have attracted interest as an alternative to chemical fungicides for plant-disease control. In this study, we attempted to explore biological control agents for three fungal phytopathogens causing downy mildew, gray mold, and ripe rot in grapevines, which are derived from shoot xylem of grapevines. KOF112, which was isolated from the Japanese indigenous wine grape Vitis sp. cv. Koshu, inhibited mycelial growth of Botrytis cinerea, Colletotrichum gloeosporioides, and Phytophthora infestans. The KOF112-inhibited mycelial tips were swollen or ruptured, suggesting that KOF112 produces antifungal substances. Analysis of the 16S rDNA sequence revealed that KOF112 is a strain of Bacillus velezensis. Comparative genome analysis indicated significant differences in the synthesis of non-ribosomal synthesized antimicrobial peptides and polyketides between KOF112 and the antagonistic B. velezensis FZB42. KOF112 showed biocontrol activities against gray mold caused by B. cinerea, anthracnose by C. gloeosporioides, and downy mildew by Plasmopara viticola. In the KOF112-P. viticola interaction, KOF112 inhibited zoospore release from P. viticola zoosporangia but not zoospore germination. In addition, KOF112 drastically upregulated the expression of genes encoding class IV chitinase and ß-1,3-glucanase in grape leaves, suggesting that KOF112 also works as a biotic elicitor in grapevine. Because it is considered that endophytic KOF112 can colonize well in and/or on grapevine, KOF112 may contribute to pest-management strategies in viticulture and potentially reduce the frequency of chemical fungicide application.

3.
J Microbiol Methods ; 165: 105688, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31425713

RESUMO

The fungus Batrachochytrium dendrobatidis is causing global amphibian declines. Here we describe a simple, rapid and inexpensive methylene blue staining protocol to determine B. dendrobatidis viability, regardless of life-stage. The viability of cells in suspension or adherent monolayers can be determined using either manual microscopy counting or colorimetric assay.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos/fisiologia , Esporângios , Esporos Fúngicos/isolamento & purificação , Animais , Azul de Metileno/química , Viabilidade Microbiana , Técnicas Microbiológicas , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa