Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(22): 28683-28693, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38768951

RESUMO

Ni-rich layered oxides LiNi1-x-yMnxCoyO2 (NMC811, x = 0.1 and y = 0.1) are considered promising cathode materials in lithium-ion batteries (LiBs) due to their high energy density. However, those suffer a severe capacity loss upon cycling at high delithiated states. The loss of performance over time can be retarded by Zr doping. Herein, a small amount of Zr is added to NMC811 material via two alternative pathways: during the formation of the transition metal (TM) hydroxide precursor at the co-precipitation step (0.1%-Zr-cp) and during the lithiation at the solid-state synthesis step (0.1%-Zr-ss). In this work, the crystallographic Zr uptake in both 0.1%-Zr-ss and 0.1%-Zr-cp is determined and quantified through synchrotron X-ray diffraction and X-ray absorption spectroscopy. We prove that the inclusion of Zr in the TM site for 0.1%-Zr-cp leads to an improvement of both specific capacity (156 vs 149 mAh/g) and capacity retention (85 vs 82%) upon 100 cycles compared to 0.1%-Zr-ss where the Zr does not diffuse into the active material and forms only an extra phase separated from the NMC811 particles.

2.
ACS Appl Mater Interfaces ; 16(35): 46473-46485, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39171907

RESUMO

This study presents an approach to achieve a near-zero temperature coefficient of resonance frequency (τf) in rare-earth titanate microwave dielectric ceramics (MWDCs) by inducing a phase transition. By Zr4+ substitution at the B site, a series of Sm2Ti1-xZrxO5 (0.02 ≤ x ≤ 0.55) ceramics are synthesized using the solid-state method to intentionally alter the radius ratio of the A/B sites, realizing in a controlled phase transition from orthorhombic (Pnma) to biphasic coexistence and ultimately to cubic (Fd3̅m) structure. The phase composition is rigorously identified through X-ray diffraction (XRD) Rietveld refinement, high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), and Raman spectroscopy. A comprehensive analysis is conducted to elucidate the relationships between factors such as ionic polarizability, packing fraction, bond valence, complex chemical bonding, and far-infrared reflectivity spectra with microwave dielectric properties. The results demonstrate that these ceramics exhibit a broad range of permittivity (14.30-23.18), high-quality factors (14,828-22,300 GHz), opposite temperature coefficient of resonance frequency (-16.0 to + 22.4 ppm/°C), and nice thermal conductivity (1.81-2.76 W·m-1·K-1), particularly at x = 0.30 with a near-zero τf value of +1.6 ppm/°C. The findings not only provide insights into designing MWDCs with a near-zero τf but also offer a promising route for developing advanced microwave materials with improved performance and reliability.

3.
ACS Appl Mater Interfaces ; 16(1): 1757-1766, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38155532

RESUMO

Increasing the charging cutoff voltage is a viable approach to push the energy density limits of LiCoO2 and meet the requirements of the rapid development of 3C electronics. However, an irreversible oxygen redox is readily triggered by the high charging voltage, which severely restricts practical applications of high-voltage LiCoO2. In this study, we propose a modification strategy via suppressing surface ligand-to-metal charge transfer to inhibit the oxygen redox-induced structure instability. A d0 electronic structure Zr4+ is selected as the charge transfer insulator and successfully doped into the surface lattice of LiCoO2. Using a combination of theoretical calculations, ex situ X-ray absorption spectra, and in situ differential electrochemical mass spectrometry analysis, our results show that the modified LiCoO2 exhibits suppressed oxygen redox activity and stable redox electrochemistry. As a result, it demonstrates a robust long-cycle lattice structure with a practically eliminated voltage decay (0.17 mV/cycle) and an excellent capacity retention of 89.4% after 100 cycles at 4.6 V. More broadly, this work provides a new perspective on suppressing the oxygen redox activity through modulating surface ligand-to-metal charge transfer for achieving a stable high-voltage ion storage structure.

4.
ACS Appl Mater Interfaces ; 15(42): 49289-49298, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37815329

RESUMO

Ni-rich layered oxide materials exhibit great prospects for practical applications in lithium-ion batteries due to their high specific capacity. However, the poor cycling performance and suboptimal rate performance have caused obstacles for their widespread application. Herein, we developed a gradient Zr element doping method based on the bulk gradient concentration of Ni-rich layered oxide material to reinforce the cycle stability and rate performance of the cathode. In particular, the orientations of the gradient Zr doping were achieved via coprecipitation in a positive or negative correlation between the concentrations of Zr and Ni, and it was revealed that the material behaves better when the Zr content is abundant in the core. The gradient doping of Zr decreases the content of Ni2+ and mitigates the mixing degree of Li+ and Ni2+, implying the superior performance of doped cathode material. Compared with the bare sample (70.7%, 121.4 mAh g-1), the Zr-doped sample delivered a higher capacity retention of 85.6% after 300 cycles at 1C (1C = 180 mA g-1) and exhibited a considerable rate performance of 122.5 mAh g-1 at 20C. In particular, the Zr-doped cathodes performed dramatically on high rate cycling at 10C, with an initial capacity of 143.6 and 103.9 mAh g-1 after 300 cycles. Furthermore, the Zr-doped cathode delivered significant stability at a high potential of 4.5 V with a capacity retention of 72.1% after 300 cycles, while that of the bare sample was only 37.4%. The concept of gradient doping strategies during coprecipitation offers new insight into the design of advanced cathodes with excellent cycling stability and rate capability.

5.
J Hazard Mater ; 448: 130987, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860058

RESUMO

In this work, single-atom Zr doping is demonstrated to be an effective strategy to enhance the catalytic performance of Co3O4 toward peroxymonosulfate (PMS) by modulating electronic structure and enlarging specific surface simultaneously. The d-band center of Co sites upshifts owing to different electronegativity of Co and Zr in the bonds of Co-O-Zr confirmed by density functional theory calculations, leading to enhanced adsorption energy of PMS and strengthened electron transfer from Co(II) to PMS. The specific surface area of Zr-doped Co3O4 increases by 6 times due to the decrease of crystalline size. Consequently, the kinetic constant of phenol degradation with Zr-Co3O4 is 10 times higher than that with Co3O4 (0.31 vs. 0.029 min-1). The relative surface specific kinetic constant of Zr-Co3O4 for phenol degradation is still 2.29 times higher than that of Co3O4 (0.00660 vs. 0.00286 g m-2 min-1). In addition, the potential practical applicability of 8Zr-Co3O4 was also confirmed by practical wastewater treatment. This study provides deep insights into modifying electronic structure and enlarging specific surface area to enhance the catalytic performance.

6.
Materials (Basel) ; 15(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35744234

RESUMO

HfO2 shows different polymorphs, including monoclinic and orthorhombic ones, that exhibit singular properties. Moreover, the character of HfO2 is also influenced by the Zr atoms as a doping agent. Here, an extensive study of the monoclinic P21/c and the orthorhombic Pca21 polymorphs of HfO2, Hf0.75Zr0.25O2, and Hf0.5Zr0.5O2 is reported. For all six systems, density functional theory (DFT) methods based on generalized gradient approximations (GGAs) were first used; then the GGA + U method was settled and calibrated to describe the electrical and optical properties of polymorphs and the responses to the oxygen vacancies. Zr had different effects in relation to the polymorph; moreover, the amount of Zr led to important differences in the optical properties of the Pca21 polymorph. Finally, oxygen vacancies were investigated, showing an important modulation of the properties of HfxZryO2 nanostructures. The combined GGA and GGA + U methods adopted in this work generate a reasonable prediction of the physicochemical properties of o- and m-HfxZryO2, identifying the effects of doping phenomena.

7.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432331

RESUMO

Plentiful research of InP semiconductor quantum dots (QDs) has been launched over the past few decades for their excellent photoluminescence properties and environmentally friendly characteristics in various applications. However, InP QDs show inferior photostability because they are extremely sensitive to the ambient environment. In this study, we propose a novel method to enhance the photostability of InP/ZnSe/ZnS QDs by doping zirconium into the ZnS layer. We certify that Zr can be oxidized to Zr oxides, which can prevent the QDs from suffering oxidation during light irradiation. The InP/ZnSe/ZnS:Zr QDs maintained 78% of the original photoluminescence quantum yields without significant photodegradation under the irradiation of LED light (450 nm, 3.0 W power intensity) for 14 h, while conventional InP/ZnSe/ZnS QDs dramatically decreased to 29%.

8.
ChemSusChem ; 15(4): e202102220, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-34784118

RESUMO

Ni-rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium-ion batteries for automotive applications. Thermal and cycling stability issues originating from increasing Ni contents are addressed by mitigation strategies such as elemental bulk substitution ("doping") and surface coating. Although both approaches separately benefit the cycling stability, there are only few reports investigating the combination of two of such approaches. Herein, the combination of Zr as common dopant in commercial materials with effective Li2 WO4 and WO3 coatings was investigated with special focus on the impact of different material processing conditions on structural parameters and electrochemical performance in nickel-cobalt-manganese (NCM) || graphite cells. Results indicated that the Zr4+ dopant diffusing to the surface during annealing improved the electrochemical performance compared to samples without additional coatings. This work emphasizes the importance to not only investigate the effect of individual dopants or coatings but also the influences between both.

9.
Nanomaterials (Basel) ; 11(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669461

RESUMO

A flame spray pyrolysis (FSP) method has been developed, for controlled doping of BiVO4 nanoparticles with W and Zr in tandem with the oxygen vacancies (Vo) of the BiVO4 lattice. Based on XPS and Raman data, we show that the nanolattice of W-BiVO4 and Zr-BiO4 can be controlled to achieve optimal O2 evolution from H2O photocatalysis. A synergistic effect is found between the W- and Zr-doping level in correlation with the Vo-concentration. FSP- made W-BiVO4 show optimal photocatalytic O2-production from H2O, up to 1020 µmol/(g × h) for 5%W-BiVO4, while the best performing Zr-doped achieved 970 µmol/(g × h) for 5%Zr-BiVO4. Higher W-or Zr-doping resulted in deterioration in photocatalytic O2-production from H2O. Thus, engineering of FSP-made BiVO4 nanoparticles by precise control of the lattice and doping-level, allows significant enhancement of the photocatalytic O2-evolution efficiency. Technology-wise, the present work demonstrates that flame spray pyrolysis as an inherently scalable technology, allows precise control of the BiVO4 nanolattice, to achieve significant improvement of its photocatalytic efficiency.

10.
ACS Appl Mater Interfaces ; 13(36): 43039-43050, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34473468

RESUMO

Single-crystalline LiNi0.6Co0.2Mn0.2O2 cathodes have received great attention due to their high discharge capacity and better electrochemical performance. However, the single-crystal materials are suffering from severe lattice distortion and electrode/electrolyte interface side reactions when cycling at high voltage. Herein, a unique single-crystal LiNi0.6Co0.2Mn0.2O2 with Al and Zr doping in the bulk and a self-formed coating layer of Li2ZrO3 in the surface has been constructed by a facile strategy. The optimized cathode material exhibits excellent structural stability and cycling performance at room/elevated temperatures after long-term cycling. Specifically, even after 100 cycles (1C, 3.0-4.4 V) at 50 °C, the capacity retention for the Al and Zr co-doped sample reaches 92.1%, which is much higher than those of the single Al-doped (85.4%), single Zr-doped (87.1%), and bare samples (76.3%). The characterization results and first-principles calculations reveal that the excellent electrochemical properties are attributed to the stable structure and interface, in which the Al and Zr co-doping hinders cation mixing and suppresses detrimental phase transformations to reduce internal stress and mitigate microcracks, and the coating layer of Li2ZrO3 can protect the surface and suppress interfacial parasitic reactions. Overall, this work provides important insights into how to simultaneously build a stable bulk structure and interface for the single-crystal NCM cathode via a facile preparation process.

11.
Nanomaterials (Basel) ; 10(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348614

RESUMO

Pure and doped vanadia (VO2, V0.98Zr0.02O2, V0.98Ce0.02O2) samples were prepared by wet chemistry synthesis from vanadyl glycolate intermediate phase and tape casted into films. Combining in-operando grazing incidence synchrotron X-ray diffraction and Raman spectroscopy, we studied the structural evolution of the films under isothermal conditions. The setup allowed assessment of the thermochromic functionality with continuous monitoring of the monoclinic to tetragonal transition in pure and doped vanadia phases, responsible for the transmission and reflection of light in the infrared part of the solar spectrum. The materials characterisation by X-ray diffraction beamline (MCX) goniometer demonstrated ideal performance, combining flexible geometry, high resolution, and the potential to accommodate the multi-channel equipment for in-operando characterisation. This method proved viable for evaluating the relevant structural and physical, and thereof functional properties of these systems. We revealed that dopants reduce the transition temperature by 5 °C on average. The synthetic route of the films was held responsible for the observed phase separation. The more favourable behaviour of cerium-doped sample was attributed to cerium alkoxide behaviour. In addition, structural, microstructural, thermal, and spectroscopic characterisation on powder samples was performed to gain more insight into the development of the phases that are responsible for thermochromic features in a broader range of doping ratios. The influence of the dopants on the extent of the thermochromic transition (transmission to reflection hysteresis) was also evaluated using (micro) structural, thermal and spectroscopic methods of powder samples. Characterisations showed that zirconium doping in 2, 4, and 6 mol% significantly influenced the phase composition and morphology of the precursor. Vanadium oxides other than VO2 can easily crystallise; however, a thermal treatment regime that allowed crystallisation of VO2 as a single phase was established.

12.
Chem Asian J ; 14(18): 3181-3187, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31342621

RESUMO

Li4 Ti5 O12 is a promising anode for lithium-ion batteries due to its zero-strain properties. However, its low conductivity has greatly affected its rate performance. At the same time, the electrolyte decomposition during cycling also needs to be solved, especially at low cut-off voltage. Herein, using a high-throughput two-step method, we synthesized Zr-doped LTO modified by mesoporous LiBaF3 nanoparticles for alkali-ion storage. The doping of Zr can enhance the electronic conductivity and facilitate the rate performance. Meanwhile, the coating of mesoporous LiBaF3 nanoparticles can form a mesoporous surface with large pore size (ca. 3-10 nm), which can benefit the alkali ion diffusion and simultaneously restrain the formation of an excess solid electrolyte interface to a reasonable range. The optimized material is used as an advanced anode for both lithium-ion and potassium-ion batteries, and good battery behavior including high-rate performance and high stability is achieved.

13.
Front Chem ; 6: 266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013969

RESUMO

Effects of zirconium (Zr) doping into BiVO4 powder on its structural properties and photocatalytic activity for O2 evolution were examined. The formation of BiVO4 powder crystallized in a monoclinic scheelite structure (ms-BiVO4) was achieved when the sample was doped with a relatively small amount of Zr. The photocatalytic activity of Zr-doped ms-BiVO4 powder was much higher than that of non-doped ms-BiVO4. However, further doping caused a reduction of photocatalytic activity for O2 evolution due to the occurrence of structural alterations into tetragonal scheelite and tetragonal zircon structures. Similar effects of Zr doping were also observed for the photoelectrochemical (PEC) system based on BiVO4 thin films doped with various amounts of Zr. Thus, Zr doping was confirmed to be effective for improvements of photocatalytic and PEC functions of BiVO4 for water oxidation.

14.
J Colloid Interface Sci ; 508: 237-247, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28841482

RESUMO

Doping with certain foreign metal ions in a photocatalyst might introduce surface defects (such as extrinsic oxygen vacancies), which can probably play an important role in the photocatalytic performance. In this work, oxygen vacancies were for the first time introduced into bismuth ferrite (BiFeO3, denoted as BFO) nanoparticles by zirconium (Zr) doping, and the relationship between oxygen vacancies and the photocatalytic activity of Zr-doped BFO was investigated. It was found that the optical properties and the photocatalytic activities of Zr-doped BFO photocatalysts were significantly affected by the Zr doping amount. The Zr-doped BFO photocatalysts showed much higher photocatalytic activities for methyl orange degradation or Cr(VI) reduction than the pristine BFO. When the Zr doping content was 2mol%, the highest photocatalytic efficiency was achieved, which was more than two times that of the pristine BFO. The boosted photocatalytic performance of Zr-doped BFO was mainly attributed to the presence of surface oxygen vacancies induced by Zr doping, which could act as electron traps and active sites to promote the efficient separation and migration of photogenerated charge carriers, as verified by the trapping experiments and the photoelectrochemical measurements. Thus, the present work provides a simple approach to introduce oxygen vacancies in semiconductor photocatalysts through metal ion doping with a great potential for development of efficient visible light photocatalysts, and also enlarges the understanding of surface-defect dependence of photocatalytic performance for environmental remediation.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 171: 487-498, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27588957

RESUMO

Transition metal oxides as transparent conducting oxides (TCOs) films, with high optical transparency (≥82%), various valence states and p-type conductivity are used in a several physical domains. This work covers the physical study of Zr doped Mn3O4 semiconductor thin films using a spray pyrolysis method where Zr content varies in starting solutions from 0 to 20at.%. The impact of this work is to offer some understanding of microscopic effects of relatively high doping Zr and then correlate these effects with the macroscopic properties for interesting applications especially gas sensor. In fact, the addition of Zr ions pointed out the reduction of crystallite size (24.1 (nm)) with 20at.% doping allowing a better adsorption of gas molecules. In addition, it promotes the increase of optical gap (2.92eV) with 6at.% doping which is a useful parameter for some optical devices. X-ray diffraction (XRD), Raman spectroscopy, FTIR spectroscopy, atomic force microscopy (AFM) and EDAX techniques were used. It is found that these films crystallized in spinel type tetragonal hausmmanite structure. The gas sensing activity of these thin films (0, 6, 12 and 20at.% Zr) was examined with Ethanol. The performances of these last four sensing layers were compared. All the tests were performed at different working temperatures Twork=125, 150, 175 and 225°C and under two gas concentrations: 0.1% and 0.5% ethanol using dry air as carrier gas. The films exhibited noticeably ethanol sensing especially the sample doped with 6% of zirconium exhibits the most excellent sensing performance since it showed a clear response already at a low ethanol concentration of 0.1%.

16.
J Colloid Interface Sci ; 476: 9-19, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27179174

RESUMO

Due to the good stability and convenient optical properties, TiO2 nanostructures still the prominent photoanode materials in the Dye Sensitized Solar Cells (DSCs). However, the well-known low bandgap energy and weak adsorption affinity for the dye distinctly constrain the wide application. This work discusses the impact of Zr-doping and nanofibrous morphology on the performance and physicochemical properties of TiO2. Zr-doped TiO2 nanofibers (NFs), with various zirconia content (0, 0.5, 1, 1.5 and 2wt%) were prepared by calcination of electrospun mats composed of polyvinyl acetate, titanium isopropoxyl and zirconium n-propoxyl. For all formulations, the results have shown that the prepared materials are continuous, randomly oriented, and good morphology nanofibers. The average diameter decreased from 353.85nm to 210.78nm after calcination without a considerable influence on the nanofibrous structure regardless the zirconia content. XRD result shows that there is no Rutile nor Brookite phases in the obtained material and the average crystallite size of the sample is affected by the presence of Zr-doping and changed from 23.01nm to 37.63nm for TiO2 and Zr-doped TiO2, respectively. Optical studies have shown Zr-doped TiO2 NFs have more absorbance in the visible region than that of pristine TiO2 NFs; the maximum absorbance is corresponding to the NFs having 1wt% zirconia. The improved spectra of Zr-doped TiO2 in the visible region is attributed to the heterostructure composition resulting from Zr-doping. The absorption bandgaps were calculated using Tauc model as 3.202 and 3.217 for pristine and Zr (1wt%)-doped TiO2 NFs, respectively. Furthermore, in Dye-sensitized Solar Cells, utilizing Zr (1wt%)-doped TiO2 nanofibers achieved higher efficiency of 4.51% compared to the 1.61% obtained from the pristine TiO2 NFs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa