RESUMO
Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Associadas à Mucosa , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/patologia , Macrófagos Associados a TumorRESUMO
Efforts to prolong the blood circulation time and bypass immune clearance play vital roles in improving the therapeutic efficacy of nanoparticles (NPs). Herein, a multifunctional nanoplatform (BPP@RTL) that precisely targets tumor cells is fabricated by encapsulating ultrasmall phototherapeutic agent black phosphorus quantum dot (BPQD), chemotherapeutic drug paclitaxel (PTX), and immunomodulator PolyMetformin (PM) in hybrid membrane-camouflaged liposomes. Specifically, the hybrid cell membrane coating derived from the fusion of cancer cell membrane and red blood cell membrane displays excellent tumor targeting efficiency and long blood circulation property due to the innate features of both membranes. After collaboration with aPD-L1-based immune checkpoint blockade therapy, a boosted immunotherapeutic effect is obtained due to elevated dendritic cell maturation and T cell activation. Significantly, laser-irradiated BPP@RTL combined with aPD-L1 effectively eliminates primary tumors and inhibits lung metastasis in 4T1 breast tumor model, offering a promising treatment plan to develop personalized antitumor strategy.
Assuntos
Imunoterapia , Paclitaxel , Fósforo , Pontos Quânticos , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Animais , Fósforo/química , Camundongos , Paclitaxel/química , Paclitaxel/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Feminino , Humanos , Linhagem Celular Tumoral , Lipossomos/química , Nanopartículas/química , Camundongos Endogâmicos BALB CRESUMO
BACKGROUND: According to data estimated by the WHO, primary liver cancer is currently the fourth most common malignant tumor and the second leading cause of death around the world. Hepatocellular carcinoma (HCC) is one of the most common primary liver malignancies, so effective therapy is highly desired for HCC. RESULTS: In this study, the use of poly(L-Aspartic acid)-poly(ethylene glycol)/combretastatin A4 (CA4-NPs) was aimed to significantly disrupt new blood vessels in tumor tissues for targeted hepatic tumor therapy. Here, PEG-b-PAsp-g-CA4 showed significantly prolonged retention in plasma and tumor tissue. Most importantly, CA4-NPs were mainly distributed at the tumor site because of the triple target effects-enhanced permeability and retention (EPR) effect, acid-sensitive (pH = 5.5) effect to the tumor microenvironment (TME), and good selectivity of CA4 for central tumor blood vessel. Considering that CA4-NPs might induce severe hypoxic conditions resulting in high expression of HIF-1α in tumor tissues, which could induce the overexpression of PD-L1, herein we also used a programmed death-ligand 1 antibody (aPD-L1) to prevent immunosuppression. This way of complementary combination is able to achieve an ideal treatment effect in tumor site where CA4-NPs and aPD-L1 could respond to the inner area and peripheral area, respectively. As a result, a significant decrease in tumor volume and weight was observed in the combination group of CA4-NPs plus aPD-L1 compared with CA4-NPs or aPD-L1 monotherapy in subcutaneous Hepa1-6 hepatic tumor models. CONCLUSIONS: We presented a new idea that co-administration of CA4-NPs and aPD-L1 possessed notable anti-tumor efficacy for HCC treatment.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/administração & dosagem , Estilbenos/administração & dosagem , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Antígeno B7-H1 , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Polietilenoglicóis , Estilbenos/química , Microambiente Tumoral/efeitos dos fármacosRESUMO
The discovery of cuproptosis, a copper-dependent mechanism of programmed cell death, has provided a way for cancer treatment. However, cuproptosis has inherent limitations, including potential cellular harm, the lack of targeting, and insufficient efficacy as a standalone treatment. Therefore, exogenously controlled combination treatments have emerged as key strategies for cuproptosis-based oncotherapy. In this study, a Cu2-xSe@cMOF nanoplatform was constructed for combined sonodynamic/cuproptosis/gas therapy. This platform enabled precise cancer cotreatment, with external control allowing the selective induction of cuproptosis in cancer cells. This approach effectively prevented cancer metastasis and recurrence. Furthermore, Cu2-xSe@cMOF was combined with the antiprogrammed cell death protein ligand-1 antibody (aPD-L1), and this combination maximized the advantages of cuproptosis and immune checkpoint therapy. Additionally, under ultrasound irradiation, the H2Se gas generated from Cu2-xSe@cMOF induced cytotoxicity in cancer cells. Further, it generated reactive oxygen species, which hindered cell survival and proliferation. This study reports an externally controlled system for cuproptosis induction that combines a carbonized metal-organic framework with aPD-L1 to enhance cancer treatment. This precision and reinforced cuproptosis cancer therapy platform could be valuable as an effective therapeutic agent to reduce cancer mortality and morbidity in the future.
Assuntos
Cobre , Inibidores de Checkpoint Imunológico , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Camundongos , Animais , Cobre/química , Cobre/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Feminino , Carbono/química , Carbono/farmacologia , Camundongos Endogâmicos BALB CRESUMO
Immune checkpoint inhibitors (ICIs) are effective agents for tumor immunotherapy. However, their clinical effectiveness is unsatisfactory due to off-target effects and a suppressive immune microenvironment. This study developed a nanodrug delivery system for bladder cancer (BCa) using PCL-MPEG and PCL-PEG-CHO to synthesize internal hydrophobic and external hydrophilic micelles (PP) that encapsulated water-insoluble astragaloside IV (PPA). The aldehyde group on the surface of PPA reacted with the amino group of aPD-L1, allowing the decoration of this antibody on the surface of the micelles. The resultingPPA@aPD-L1effectively piggybacked astragaloside IV and aPD-L1 antibody. These findings suggest that PPA@aPD-L1 is relatively stable in circulation and efficiently binds to BCa cells with the aid of aPD-L1. Additionally, this strategy prolongs the drug's retention time in tumors. Compared to PBS, PP, and PPA with PPA + aPD-L1 groups, PPA@aPD-L1significantly prolonged the survival of mice with BCa and reduced tumor volume. Mechanistic studies showed that PPA inhibited the NF-κB and STAT3 signaling pathways in tumor cells. Additionally, PPA@aPD-L1increased IFN-γ and decreased IL-10 expression in bladder tumors, affecting the number and type of intratumorally infiltrating T cells. Our study presents a simple and effective drug delivery system that combines herbal monomers with ICIs. It has demonstrated a potent ability to suppress tumor growth and holds potential for future applications.
Assuntos
Micelas , Saponinas , Triterpenos , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Saponinas/farmacologia , Saponinas/administração & dosagem , Saponinas/química , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/administração & dosagem , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores de Checkpoint Imunológico/farmacologia , Sistemas de Liberação de Medicamentos , FemininoRESUMO
Activating cGAS-STING pathway has great potential to achieve effective antitumor immunotherapy. However, mutant p53 (mutp53), a commonly observed genetic alteration in over 50% of human cancer, will impede the therapeutic performance of the cGAS-STING pathway. Herein, multifunctional ZIF-8@MnO2 nanoparticles are constructed to degrade mutp53 and facilitate the cGAS-STING pathway. The synthesized ZIF-8@MnO2 can release Zn2+ and Mn2+ in cancer cells to induce oxidative stress and cytoplasmic leakage of fragmented mitochondrial double-stranded DNAs (dsDNAs). Importantly, the released Zn2+ induces variable degradation of multifarious p53 mutants through proteasome ubiquitination, which can alleviate the inhibitory effects of mutp53 on the cGAS-STING pathway. In addition, the released Mn2+ further increases the sensitivity of cGAS to dsDNAs as immunostimulatory signals. Both in vitro and in vivo results demonstrate that ZIF-8@MnO2 effectively promotes the cGAS-STING pathway and synergizes with PD-L1 checkpoint blockades, leading to remarkable regression of local tumors as well as distant metastases of breast cancer. This study proposes an inorganic metal ion-based nanoplatform to enhance the cGAS-STING-mediated antitumor immunotherapy, especially to those tumors with mutp53 expression.
Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Proteína Supressora de Tumor p53 , Compostos de Manganês , Óxidos , ImunoterapiaRESUMO
Immunotherapy is an emerging antitumor modality with high specificity and persistence, but its application for resected tumor treatment is impeded by the low availability of tumor-specific antigens and strong immunosuppression in the wound margin. Here a nanoengineered hydrogel is developed for eliciting robust cooperative ferroptosis-immunotherapeutic effect on resected tumors. Specifically, ß-cyclodextrin (ß-CD) is first grafted onto oxidized sodium alginate (OSA) through Schiff base ligation, which could trap cRGD-modified redox-responsive Withaferin prodrugs (WA-cRGD) to obtain the hydrogel building blocks (Gel@WA-cRGD). Under Ca2+-mediated crosslinking, Gel@WA-cRGD rapidly forms physiologically stable hydrogels, of which the porous network is used to deliver programmed cell death ligand 1 antibodies (aPD-L1). After injection into the post-surgical wound cavity, the ß-CD-entrapped WA-cRGD is detached by the local acidity and specifically internalized by residual tumor cells to trigger ferroptosis, thus releasing abundant damage-associated molecular patterns (DAMPs) and tumor-derived antigens for activating the antigen-presenting cell-mediated cross-presentation and downstream cytotoxic T cell (CTL)-mediated antitumor responses. Furthermore, aPD-L1 could block PD-1/PD-L1 interaction and enhance the effector function of CTLs to overcome tumor cell-mediated immunosuppression. This cooperative hydrogel-based antitumor strategy for ferroptosis-immunotherapy may serve as a generally-applicable approach for postoperative tumor management. STATEMENT OF SIGNIFICANCE: To overcome the immunosuppressive microenvironment in resected solid tumors for enhanced patient survival, here we report a nanoengineered hydrogel incorporated supramolecular redox-activatable Withaferin prodrug and PD-L1 antibody, which could elicit robust cooperative ferroptosis-immunotherapeutic effect against residual tumor cells in the surgical bed to prevent tumor relapse, thus offering a generally-applicable approach for postoperative tumor management.
Assuntos
Ferroptose , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Antígeno B7-H1 , Hidrogéis/farmacologia , Neoplasia Residual , Recidiva Local de Neoplasia , Imunoterapia , Antígenos de Neoplasias , Microambiente Tumoral , Linhagem Celular TumoralRESUMO
Glioblastomas (GBMs) are highly aggressive brain tumors that have developed resistance to currently available conventional therapies, including surgery, radiation, and systemic chemotherapy. In this study, we investigated the safety of a live attenuated Japanese encephalitis vaccine strain (JEV-LAV) virus as an oncolytic virus for intracerebral injection in mice. We infected different GBM cell lines with JEV-LAV to investigate whether it had growth inhibitory effects on GBM cell lines in vitro. We used two models for evaluating the effect of JEV-LAV on GBM growth in mice. We investigated the antitumor immune mechanism of JEV-LAV through flow cytometry and immunohistochemistry. We explored the possibility of combining JEV-LAV with PD-L1 blocking therapy. This work suggested that JEV-LAV had oncolytic activity against GBM tumor cells in vitro and inhibited their growth in vivo. Mechanistically, JEV-LAV increased CD8+ T cell infiltration into tumor tissues and remodeled the immunosuppressive GBM microenvironment that is non-conducive to immunotherapy. Consequently, the results of combining JEV-LAV with immune checkpoint inhibitors indicated that JEV-LAV therapy improved the response of aPD-L1 blockade therapy against GBM. The safety of intracerebrally injected JEV-LAV in animals further supported the clinical use of JEV-LAV for GBM treatment.
Assuntos
Vírus da Encefalite Japonesa (Espécie) , Glioblastoma , Vacinas contra Encefalite Japonesa , Vírus Oncolíticos , Animais , Camundongos , Glioblastoma/terapia , Imunoterapia , Microambiente TumoralRESUMO
The number of patients who benefit from acquired immunotherapy is limited. Stimulator of interferon genes (STING) signal activation is a significant component to enhance innate immunity, which has been used to realize broad-spectrum immunotherapy. Here, M@P@HA nanoparticles, as a STING signal amplifier, are constructed to enhance innate immunotherapy. Briefly, when M@P@HA was targeted into tumor cells, the nanoparticles decomposed with Mn2+ and activated the release of protoporphyrin (PpIX). Under light irradiation, the generated reactive oxygen species disrupt the cellular redox homeostasis to lead cytoplasm leakage of damaged mitochondrial double-stranded (ds) DNA, which is the initiator of the STING signal. Simultaneously, Mn2+ as the immunoregulator could significantly increase the activity of related protein of a STING signal, such as cyclic GMP-AMP synthase (cGAS) and STING, to further amplify the STING signal of tumor cells. Subsequently, the STING signal of tumor-associated macrophages (TAM) is also activated by capturing dsDNA and Mn2+ that escaped from tumor cells, so as to enhance innate immunity. It is found that, by amplifying the STING signal of tumor tissue, M@P@HA could not only activate innate immunity but also cascade to activate CD8+ T cell infiltration even in a tumor with low immunogenicity.
Assuntos
Proteínas de Membrana , Protoporfirinas , Humanos , Espécies Reativas de Oxigênio , Proteínas de Membrana/metabolismo , Transdução de Sinais , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Imunidade Inata , Imunoterapia , DNA/metabolismo , InterferonsRESUMO
Bioinformatically triple negative breast cancer (TNBC) and colon adenocarcinoma (COAD), two typical "cold" cancers, were found overexpressed PD-L1 and CD47 respectively but neither of them showed satisfied response on its corresponding immune checkpoint blockade (ICB) in clinic. The initial immunotherapeutic resistance to ICB was essentially attributed to the so-called "cold" tumor immune milieu (TIM). To overcome tumor immunological tolerance against ICBs, here we report a versatile nano-modulator for point-to-point counteracting the immune-suppressors meanwhile boosting tumor T cell infiltration. Small interfering RNA targeting indoleamine 2,3-dioxygenase-1 was first co-delivered with gemcitabine using our lab-made biocompatible nanocages for relieving the immune brakes related to regulatory T cells and myeloid-derived suppressor cells. O2-producible mineralization was then tattooed on the surface of the nanocarriers to alleviate the immune inhibition of M2 macrophages. Followed with the decoration of therapeutic ICB antibodies on the mineralized shell, a versatile nano-modulator was constructed. TNBC and COAD were employed to evaluate the tumoricidal efficacy of the nano-modulator that decorated with aPD-L1 and aCD47, respectively. Our nano-modulator demonstrated multipotencies in eliciting a "hot" TIM and greatly potentiated ICB treatment for these "cold" malignancies. The strung expansibility of the nano-modulator may be also conducive in addressing the failure of more other ICBs on the non-responsive subpopulation of patients despite the corresponding immune checkpoint highly expressed in tumors.