Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(13): 5832-5843, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511412

RESUMO

Photosensitizer-mediated abiotic oxidation of Mn(II) can yield soluble reactive Mn(III) and solid Mn oxides. In eutrophic water systems, the ubiquitous algal extracellular organic matter (EOM) is a potential photosensitizer and may have a substantial impact on the oxidation of Mn(II). Herein, we focused on investigating the photochemical oxidation process from Mn(II) to solid Mn oxide driven by EOM. The results of irradiation experiments demonstrated that the generation of Mn(III) intermediate was crucial for the successful photo oxidization of Mn(II) to solid Mn oxide mediated by EOM. EOM can serve as both a photosensitizer and a ligand, facilitating the formation of the Mn(III)-EOM complex. The complex exhibited excellent efficiency in removing 17α-ethinylestradiol. Furthermore, the complex underwent decomposition as a result of reactions with reactive intermediates, forming a solid Mn oxide. The presence of nitrate can enhance the photochemical oxidation process, facilitating the conversion of Mn(II) to Mn(III) and then to solid Mn oxide. This study deepens our grasp of Mn(II) geochemical processes in eutrophic water and its impact on organic micropollutant fate.


Assuntos
Etinilestradiol , Óxidos , Óxidos/química , Fármacos Fotossensibilizantes , Compostos de Manganês/química , Oxirredução , Água/química
2.
Water Res ; 236: 119980, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080107

RESUMO

Algal extracellular organic matter (EOM), a major fraction of the dissolved organic matter found in eutrophic plateau lakes, can act as a photosensitizer to drive the abiotic oxidation of Mn(II). This process has the potential to generate reactive Mn(III) and influence the fate of organic pollutants. In this study, the photodegradation of 17α-ethinylestradiol (EE2) in the presence of Mn(II) and EOM was investigated with emphasis on the photogeneration mechanism of Mn(III). The results indicated that Mn(II) can accelerate EE2 photodegradation in EOM solution owing to the photogeneration of reactive Mn(III), and the enhancement was greater at higher Mn(II) concentrations. The generation of reactive Mn(III) was mainly attributable to the action of superoxide radical generated by photosensitization of EOM. In addition, the photodegradation of EE2 was slower at higher pH, possibly because of the deactivation of Mn(III) under alkaline conditions. Single-electron transfer was an indispensable process in the photodegradation. The differences in fluorophore content, pH, and NO3- concentrations are all important determinants for EE2 photodegradation in natural waters. The information obtained in this research would contribute to the understanding of reactions between Mn(II) and EOM, and provide new insights into the behaviors of reactive Mn(III) in eutrophic water irradiated by sunlight.


Assuntos
Poluentes Químicos da Água , Fotólise , Poluentes Químicos da Água/química , Etinilestradiol/química , Água , Oxirredução , Plantas/metabolismo
3.
Chemosphere ; 287(Pt 3): 132258, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826936

RESUMO

The aim of this study was to determine the effect of abiotic aging of sewage sludge (SSL)-derived biochars on their physicochemical properties and in consequence on their stability. Biochars produced at 500 or 700 °C from SSLs with a different composition and properties were incubated at different temperatures (-20, 4, 20, 60, and 90 °C) for 6 and 12 months. Pristine and aged biochars were characterized in terms of their composition and properties using a range of complementary methods. The results showed that SSL-derived biochars will not be as stable as previously thought in the long term. The stability of the SSL-derived biochars was closely related to the content and character of C. The biochars that had more C in their composition and, apart from aromatic C, also aliphatic matter/carbon substances deposited in surface pores (i.e. those produced from SSL with a lower initial ash content and a lower degree of aromaticity) were less stable than the biochars with a lower C content and a typically aromatic character of C (i.e. those derived from SSL with a higher initial ash content and a higher degree of aromaticity). Their oxidation led to partial mineralization of aliphatic chains or organic surface film and manifested itself in a greater changes in their properties. The low-temperature biochars (BC-500) with lower aromaticity were found to be more susceptible to oxidation than the high-temperature ones (BC-700) with higher aromaticity. The more aromatic structure of C limited access of O2 molecules to biochar interior, due to which the processes occurring during aging were concentrated in their surface layer and their properties were less change. It can therefore be concluded that pyrolysis of SSL with higher aromaticity and a lower organic content and higher pyrolysis temperatures will lead to obtaining more stable SSL-derived biochars.


Assuntos
Carvão Vegetal , Esgotos , Temperatura
4.
Fundam Res ; 2(2): 208-217, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38933163

RESUMO

Flavins and siderophores secreted by various plants, fungi and bacteria under iron (Fe) deficient conditions play important roles in the biogeochemical cycling of Fe in the environment. Although the mechanisms of flavin and siderophore mediated Fe(III) reduction and dissolution under anoxic conditions have been widely studied, the influence of these compounds on Fe(II) oxidation under oxic conditions is still unclear. In this study, we investigated the kinetics of aqueous Fe(II) (17.8 µM) oxidation by O2 at pH 5‒7 in the presence of riboflavin (oxidized (RBF) and reduced (RBFH2)) and desferrioxamine B (DFOB) as representative flavins and siderophores, respectively. Results showed that the addition of RBF/RBFH2 or DFOB markedly accelerates the oxidation of aqueous Fe(II) by O2. For instance, at pH 6, the rate of Fe(II) oxidation was enhanced 20‒70 times when 10 µM RBFH2 was added. The mechanisms responsible for the accelerated Fe(II) oxidation are related to the redox reactivity and complexation ability of RBFH2, RBF and DFOB. While RBFH2 does not readily complex Fe(II)/Fe(III), it can activate O2 and generate reactive oxygen species, which then rapidly oxidize Fe(II). In contrast, both RBF and DFOB do not reduce O2 but react with Fe(II) to form RBF/DFOB-complexed Fe(II), which in turn accelerates Fe(II) oxidation. Furthermore, the lower standard reduction potential of the Fe(II)-DFOB complex, compared to the Fe(II)-RBF complex, correlates with a higher oxidation rate constant for the Fe(II)-DFOB complex. Our study reveals an overlooked catalytic role of flavins and siderophores that may contribute to Fe(II)/Fe(III) cycling at oxic-anoxic interfaces.

5.
Sci Total Environ ; 789: 147458, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34049149

RESUMO

The aim of this study was to determine the effect of abiotic aging of biochars under controlled laboratory conditions on its physicochemical properties and in consequence on their stability. Biochars (BCs) produced at 500 and 700 °C from willow or sewage sludge were incubated at different temperatures (-20, 4, 20, 60, or 90 °C) for 6 and 12 months. Pristine (i.e. immediately after their production) and aged BCs were characterized using a range of complementary methods. As a result of simulated temperature aging, there was a change in all biochar properties studied, with the direction of these changes being determined by both the type of feedstock and biochar production temperature. At all temperatures, aging was the most intense during the first 6 months and led to oxidation of the biochars and removal of the most labile components from them. The intensity of these processes increased with increasing aging temperature. Incubation of the biochars for another 6 months did not have such a significant effect on the biochar properties as that observed during the first months of incubation, which is evidence that the biochars had reached stability. The sewage sludge-derived biochars with a higher mineral content than the willow-derived biochars were less stable. The low-temperature biochars (BC-500) with lower aromaticity were more prone to abiotic oxidation than the high-temperature biochars (BC-700) with higher aromaticity and structurally ordered C. Based on this study, it can be concluded that aging induced changes will be specific for each biochar, i.e. they will depend on both the type of feedstock and pyrolysis temperature. Nonetheless, all biochars will be oxidized to a smaller or greater extent, which will result in an increase in the number of surface oxygen functional groups, an increased degree of their hydrophilicity and polarity, and a decrease in pH.


Assuntos
Salix , Esgotos , Carvão Vegetal , Pirólise
6.
Biology (Basel) ; 5(2)2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27271677

RESUMO

Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths.

7.
J Hazard Mater ; 294: 70-9, 2015 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25855615

RESUMO

Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust.


Assuntos
Arseniatos/química , Hidróxidos/química , Ferro/química , Óxidos/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa