Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.322
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 153-178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941602

RESUMO

The intestine is the largest peripheral lymphoid organ in animals, including humans, and interacts with a vast array of microorganisms called the gut microbiota. Comprehending the symbiotic relationship between the gut microbiota and our immune system is essential not only for the field of immunology but also for understanding the pathogenesis of various systemic diseases, including cancer, cardiometabolic disorders, and extraintestinal autoimmune conditions. Whereas microbe-derived antigens are crucial for activating the intestinal immune system, particularly T and B cells, as environmental cues, microbes and their metabolites play a critical role in directing the differentiation of these immune cells. Microbial metabolites are regarded as messengers from the gut microbiota, since bacteria have the ability to produce unique molecules that humans cannot, and many immune cells in the intestine express receptors for these molecules. This review highlights the distinct relationships between microbial metabolites and the differentiation and function of the immune system.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Microbioma Gastrointestinal/imunologia , Diferenciação Celular , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Bactérias/imunologia , Bactérias/metabolismo
2.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653239

RESUMO

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Assuntos
Akkermansia , Bacteroides , Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Simbiose , Animais , Humanos , Masculino , Camundongos , Akkermansia/metabolismo , Bacteroides/metabolismo , beta-Lactamases/metabolismo , Ácidos e Sais Biliares/metabolismo , Vias Biossintéticas/genética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Verrucomicrobia/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia
3.
Cell ; 187(7): 1801-1818.e20, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38471500

RESUMO

The repertoire of modifications to bile acids and related steroidal lipids by host and microbial metabolism remains incompletely characterized. To address this knowledge gap, we created a reusable resource of tandem mass spectrometry (MS/MS) spectra by filtering 1.2 billion publicly available MS/MS spectra for bile-acid-selective ion patterns. Thousands of modifications are distributed throughout animal and human bodies as well as microbial cultures. We employed this MS/MS library to identify polyamine bile amidates, prevalent in carnivores. They are present in humans, and their levels alter with a diet change from a Mediterranean to a typical American diet. This work highlights the existence of many more bile acid modifications than previously recognized and the value of leveraging public large-scale untargeted metabolomics data to discover metabolites. The availability of a modification-centric bile acid MS/MS library will inform future studies investigating bile acid roles in health and disease.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Metabolômica , Espectrometria de Massas em Tandem , Animais , Humanos , Ácidos e Sais Biliares/química , Metabolômica/métodos , Poliaminas , Espectrometria de Massas em Tandem/métodos , Bases de Dados de Compostos Químicos
4.
Cell ; 186(9): 1950-1967.e25, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36996814

RESUMO

Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Inspired by the discovery that mutations in SLC7A5, a transporter of metabolically essential large neutral amino acids (LNAAs), lead to autism, we employed metabolomic profiling to study the metabolic states of the cerebral cortex across different developmental stages. We found that the forebrain undergoes significant metabolic remodeling throughout development, with certain groups of metabolites showing stage-specific changes, but what are the consequences of perturbing this metabolic program? By manipulating Slc7a5 expression in neural cells, we found that the metabolism of LNAAs and lipids are interconnected in the cortex. Deletion of Slc7a5 in neurons affects the postnatal metabolic state, leading to a shift in lipid metabolism. Additionally, it causes stage- and cell-type-specific alterations in neuronal activity patterns, resulting in a long-term circuit dysfunction.


Assuntos
Aminoácidos Neutros , Transportador 1 de Aminoácidos Neutros Grandes , Feminino , Humanos , Gravidez , Aminoácidos Neutros/genética , Aminoácidos Neutros/metabolismo , Encéfalo/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Mutação , Neurônios/metabolismo , Animais , Camundongos
5.
Cell ; 186(4): 748-763.e15, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36758548

RESUMO

Although many prokaryotes have glycolysis alternatives, it's considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Difosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatos de Inositol/genética , Fosfatos de Inositol/metabolismo , Glicólise/genética , Respiração , Pirofosfatases/metabolismo , Glucose/metabolismo
6.
Cell ; 185(12): 2086-2102.e22, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35561685

RESUMO

Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as "feedback disruptors," break homeostasis, and increase viral transcription factors to cytotoxic levels (termed "open-loop lethality"). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC50, synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance.


Assuntos
Antivirais , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Animais , Antivirais/farmacologia , Farmacorresistência Viral , Redes Reguladoras de Genes/efeitos dos fármacos , Camundongos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral
7.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35303419

RESUMO

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Sialiltransferases/genética , Animais , Homeostase , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Muco/metabolismo , Sialiltransferases/metabolismo , Simbiose
8.
Cell ; 182(6): 1460-1473.e17, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32916129

RESUMO

The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease has been difficult due to apparent disconnects between animal and human studies and lack of an integrated multi-omics view of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome, and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases. VIDEO ABSTRACT.


Assuntos
Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica/genética , Síndrome do Intestino Irritável/metabolismo , Metaboloma , Purinas/metabolismo , Transcriptoma/genética , Animais , Ácidos e Sais Biliares/metabolismo , Biópsia , Butiratos/metabolismo , Cromatografia Líquida , Estudos Transversais , Epigenômica , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Regulação da Expressão Gênica/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Hipoxantina/metabolismo , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/microbiologia , Estudos Longitudinais , Masculino , Metaboloma/fisiologia , Camundongos , Estudos Observacionais como Assunto , Estudos Prospectivos , Software , Espectrometria de Massas em Tandem , Transcriptoma/fisiologia
9.
Cell ; 177(5): 1201-1216.e19, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031005

RESUMO

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.


Assuntos
Microambiente Celular/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Mitocôndrias/imunologia , Espécies Reativas de Oxigênio/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Microambiente Celular/genética , Ciclo do Ácido Cítrico/genética , Ciclo do Ácido Cítrico/imunologia , Células Dendríticas/patologia , Hexoquinase/genética , Hexoquinase/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/imunologia
10.
Cell ; 178(6): 1313-1328.e13, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491384

RESUMO

Emerging evidence indicates a central role for the microbiome in immunity. However, causal evidence in humans is sparse. Here, we administered broad-spectrum antibiotics to healthy adults prior and subsequent to seasonal influenza vaccination. Despite a 10,000-fold reduction in gut bacterial load and long-lasting diminution in bacterial diversity, antibody responses were not significantly affected. However, in a second trial of subjects with low pre-existing antibody titers, there was significant impairment in H1N1-specific neutralization and binding IgG1 and IgA responses. In addition, in both studies antibiotics treatment resulted in (1) enhanced inflammatory signatures (including AP-1/NR4A expression), observed previously in the elderly, and increased dendritic cell activation; (2) divergent metabolic trajectories, with a 1,000-fold reduction in serum secondary bile acids, which was highly correlated with AP-1/NR4A signaling and inflammasome activation. Multi-omics integration revealed significant associations between bacterial species and metabolic phenotypes, highlighting a key role for the microbiome in modulating human immunity.


Assuntos
Antibacterianos/farmacologia , Anticorpos Antivirais/imunologia , Microbioma Gastrointestinal/fisiologia , Imunidade/efeitos dos fármacos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Formação de Anticorpos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Imunogenicidade da Vacina/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Masculino , Adulto Jovem
11.
Annu Rev Biochem ; 87: 991-1014, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29596002

RESUMO

Peptidoglycan is an essential component of the cell wall that protects bacteria from environmental stress. A carefully coordinated biosynthesis of peptidoglycan during cell elongation and division is required for cell viability. This biosynthesis involves sophisticated enzyme machineries that dynamically synthesize, remodel, and degrade peptidoglycan. However, when and where bacteria build peptidoglycan, and how this is coordinated with cell growth, have been long-standing questions in the field. The improvement of microscopy techniques has provided powerful approaches to study peptidoglycan biosynthesis with high spatiotemporal resolution. Recent development of molecular probes further accelerated the growth of the field, which has advanced our knowledge of peptidoglycan biosynthesis dynamics and mechanisms. Here, we review the technologies for imaging the bacterial cell wall and its biosynthesis activity. We focus on the applications of fluorescent d-amino acids, a newly developed type of probe, to visualize and study peptidoglycan synthesis and dynamics, and we provide direction for prospective research.


Assuntos
Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano/biossíntese , Aminoácidos/química , Bactérias/ultraestrutura , Parede Celular/ultraestrutura , Corantes Fluorescentes/química , Microscopia de Força Atômica , Microscopia Eletrônica , Microscopia de Fluorescência
12.
Cell ; 175(3): 679-694.e22, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340040

RESUMO

Dietary soluble fibers are fermented by gut bacteria into short-chain fatty acids (SCFA), which are considered broadly health-promoting. Accordingly, consumption of such fibers ameliorates metabolic syndrome. However, incorporating soluble fiber inulin, but not insoluble fiber, into a compositionally defined diet, induced icteric hepatocellular carcinoma (HCC). Such HCC was microbiota-dependent and observed in multiple strains of dysbiotic mice but not in germ-free nor antibiotics-treated mice. Furthermore, consumption of an inulin-enriched high-fat diet induced both dysbiosis and HCC in wild-type (WT) mice. Inulin-induced HCC progressed via early onset of cholestasis, hepatocyte death, followed by neutrophilic inflammation in liver. Pharmacologic inhibition of fermentation or depletion of fermenting bacteria markedly reduced intestinal SCFA and prevented HCC. Intervening with cholestyramine to prevent reabsorption of bile acids also conferred protection against such HCC. Thus, its benefits notwithstanding, enrichment of foods with fermentable fiber should be approached with great caution as it may increase risk of HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , Colestase/complicações , Fibras na Dieta/metabolismo , Disbiose/complicações , Fermentação , Microbioma Gastrointestinal , Neoplasias Hepáticas/etiologia , Animais , Carcinoma Hepatocelular/microbiologia , Linhagem Celular Tumoral , Colestase/microbiologia , Dieta Hiperlipídica/efeitos adversos , Disbiose/microbiologia , Inulina/efeitos adversos , Neoplasias Hepáticas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Cell ; 174(6): 1549-1558.e14, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100189

RESUMO

Engineering microorganisms for production of fuels and chemicals often requires major re-programming of metabolism to ensure high flux toward the product of interest. This is challenging, as millions of years of evolution have resulted in establishment of tight regulation of metabolism for optimal growth in the organism's natural habitat. Here, we show through metabolic engineering that it is possible to alter the metabolism of Saccharomyces cerevisiae from traditional ethanol fermentation to a pure lipogenesis metabolism, resulting in high-level production of free fatty acids. Through metabolic engineering and process design, we altered subcellular metabolic trafficking, fine-tuned NADPH and ATP supply, and decreased carbon flux to biomass, enabling production of 33.4 g/L extracellular free fatty acids. We further demonstrate that lipogenesis metabolism can replace ethanol fermentation by deletion of pyruvate decarboxylase enzymes followed by adaptive laboratory evolution. Genome sequencing of evolved strains showed that pyruvate kinase mutations were essential for this phenotype.


Assuntos
Ácidos Graxos não Esterificados/biossíntese , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Glucose/metabolismo , Glicólise , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Lipogênese , NADP/metabolismo , Via de Pentose Fosfato/genética , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Cell ; 168(1-2): 172-185.e15, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086090

RESUMO

Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.


Assuntos
Vibrio cholerae/citologia , Vibrio cholerae/patogenicidade , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Locomoção , Camundongos , Peptidoglicano/metabolismo , Periplasma/metabolismo , Alinhamento de Sequência , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulência
15.
Cell ; 167(6): 1469-1480.e12, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912057

RESUMO

The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinson's disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.


Assuntos
Doença de Parkinson/microbiologia , Doença de Parkinson/patologia , Animais , Encéfalo/patologia , Disbiose/patologia , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiopatologia , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Camundongos , Microglia/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , alfa-Sinucleína/metabolismo
16.
Cell ; 167(2): 553-565.e12, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693354

RESUMO

Genome-metabolism interactions enable cell growth. To probe the extent of these interactions and delineate their functional contributions, we quantified the Saccharomyces amino acid metabolome and its response to systematic gene deletion. Over one-third of coding genes, in particular those important for chromatin dynamics, translation, and transport, contribute to biosynthetic metabolism. Specific amino acid signatures characterize genes of similar function. This enabled us to exploit functional metabolomics to connect metabolic regulators to their effectors, as exemplified by TORC1, whose inhibition in exponentially growing cells is shown to match an interruption in endomembrane transport. Providing orthogonal information compared to physical and genetic interaction networks, metabolomic signatures cluster more than half of the so far uncharacterized yeast genes and provide functional annotation for them. A major part of coding genes is therefore participating in gene-metabolism interactions that expose the metabolism regulatory network and enable access to an underexplored space in gene function.


Assuntos
Aminoácidos/biossíntese , Metaboloma , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Aminoácidos/genética , Cromatina/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Metaboloma/genética , Metabolômica/métodos , Família Multigênica , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica
17.
Mol Cell ; 83(18): 3333-3346.e5, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738964

RESUMO

The proteasome is responsible for removal of ubiquitinated proteins. Although several aspects of its regulation (e.g., assembly, composition, and post-translational modifications) have been unraveled, studying its adaptive compartmentalization in response to stress is just starting to emerge. We found that following amino acid starvation, the proteasome is translocated from its large nuclear pool to the cytoplasm-a response regulated by newly identified mTOR-agonistic amino acids-Tyr, Trp, and Phe (YWF). YWF relay their signal upstream of mTOR through Sestrin3 by disrupting its interaction with the GATOR2 complex. The triad activates mTOR toward its downstream substrates p62 and transcription factor EB (TFEB), affecting both proteasomal and autophagic activities. Proteasome translocation stimulates cytosolic proteolysis which replenishes amino acids, thus enabling cell survival. In contrast, nuclear sequestration of the proteasome following mTOR activation by YWF inhibits this proteolytic adaptive mechanism, leading to cell death, which establishes this newly identified pathway as a key stress-coping mechanism.


Assuntos
Aminoácidos Aromáticos , Complexo de Endopeptidases do Proteassoma , Sobrevivência Celular , Aminoácidos , Serina-Treonina Quinases TOR/genética
18.
Mol Cell ; 82(2): 447-462.e6, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34856123

RESUMO

Quantitative subcellular metabolomic measurements can explain the roles of metabolites in cellular processes but are subject to multiple confounding factors. We developed stable isotope labeling of essential nutrients in cell culture-subcellular fractionation (SILEC-SF), which uses isotope-labeled internal standard controls that are present throughout fractionation and processing to quantify acyl-coenzyme A (acyl-CoA) thioesters in subcellular compartments by liquid chromatography-mass spectrometry. We tested SILEC-SF in a range of sample types and examined the compartmentalized responses to oxygen tension, cellular differentiation, and nutrient availability. Application of SILEC-SF to the challenging analysis of the nuclear compartment revealed a nuclear acyl-CoA profile distinct from that of the cytosol, with notable nuclear enrichment of propionyl-CoA. Using isotope tracing, we identified the branched chain amino acid isoleucine as a major metabolic source of nuclear propionyl-CoA and histone propionylation, thus revealing a new mechanism of crosstalk between metabolism and the epigenome.


Assuntos
Acil Coenzima A/metabolismo , Compartimento Celular , Núcleo Celular/metabolismo , Metabolismo Energético , Histonas/metabolismo , Metabolômica , Processamento de Proteína Pós-Traducional , Animais , Diferenciação Celular , Cromatografia Líquida , Citosol/metabolismo , Epigênese Genética , Células Hep G2 , Humanos , Isoleucina , Metaboloma , Camundongos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Espectrometria de Massas por Ionização por Electrospray
19.
Immunity ; 52(4): 620-634.e6, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32268121

RESUMO

Innate lymphoid cells (ILCs) play an important role in the control and maintenance of barrier immunity. However, chronic activation of ILCs results in immune-mediated pathology. Here, we show that tissue-resident type 2 ILCs (ILC2s) display a distinct metabolic signature upon chronic activation. In the context of allergen-driven airway inflammation, ILC2s increase their uptake of both external lipids and glucose. Externally acquired fatty acids are transiently stored in lipid droplets and converted into phospholipids to promote the proliferation of ILC2s. This metabolic program is imprinted by interleukin-33 (IL-33) and regulated by the genes Pparg and Dgat1, which are both controlled by glucose availability and mTOR signaling. Restricting dietary glucose by feeding mice a ketogenic diet largely ablated ILC2-mediated airway inflammation by impairing fatty acid metabolism and the formation of lipid droplets. Together, these results reveal that pathogenic ILC2 responses require lipid metabolism and identify ketogenic diet as a potent intervention strategy to treat airway inflammation.


Assuntos
Alérgenos/administração & dosagem , Asma/dietoterapia , Diacilglicerol O-Aciltransferase/imunologia , Dieta Cetogênica/métodos , Interleucina-33/imunologia , Gotículas Lipídicas/metabolismo , Subpopulações de Linfócitos T/imunologia , Alternaria/química , Animais , Asma/induzido quimicamente , Asma/imunologia , Asma/patologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Citocinas/administração & dosagem , Diacilglicerol O-Aciltransferase/genética , Modelos Animais de Doenças , Ácidos Graxos/imunologia , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Glucose/imunologia , Glucose/metabolismo , Imunidade Inata , Interleucina-33/administração & dosagem , Interleucina-33/genética , Interleucinas/administração & dosagem , Gotículas Lipídicas/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/genética , PPAR gama/imunologia , Papaína/administração & dosagem , Fosfolipídeos/imunologia , Fosfolipídeos/metabolismo , Cultura Primária de Células , Subpopulações de Linfócitos T/classificação , Subpopulações de Linfócitos T/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Linfopoietina do Estroma do Timo
20.
Immunity ; 52(4): 591-605.e6, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294405

RESUMO

Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2-/- or RNASET2-/- but not RNASE2-/-RNASET2-/- cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation.


Assuntos
Endorribonucleases/metabolismo , Monócitos/imunologia , Neutrófilos/imunologia , RNA Bacteriano/metabolismo , RNA de Protozoário/metabolismo , Receptor 8 Toll-Like/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Endorribonucleases/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Escherichia coli/química , Escherichia coli/imunologia , Edição de Genes/métodos , Humanos , Listeria monocytogenes/química , Listeria monocytogenes/imunologia , Monócitos/microbiologia , Monócitos/parasitologia , Neutrófilos/microbiologia , Neutrófilos/parasitologia , Plasmodium falciparum/química , Plasmodium falciparum/imunologia , Cultura Primária de Células , Estabilidade de RNA , RNA Bacteriano/imunologia , RNA de Protozoário/imunologia , Serratia marcescens/química , Serratia marcescens/imunologia , Staphylococcus aureus/química , Staphylococcus aureus/imunologia , Streptococcus/química , Streptococcus/imunologia , Células THP-1 , Receptor 8 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa