Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Eur J Neurosci ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349382

RESUMO

The acoustic startle reflex (ASR) and prepulse inhibition of the ASR (PPI) assess the efficiency of salience processing, a fundamental brain function that is impaired in many psychiatric conditions. Both ASR and PPI depend on noradrenergic transmission, yet the modulatory role of the locus coeruleus (LC) remains controversial. Clonidine (0.05 mg/kg, i.p.), an alpha2-adrenoreceptor agonist, strongly reduced the ASR amplitude. In contrast, chemogenetic LC inhibition only mildly suppressed the ASR and did affect the PPI in virus-transduced rats. The canine adenovirus type 2 (CAV2)-based vector carrying a gene cassette for the expression of inhibitory receptors (hM4Di) and noradrenergic cell-specific promoter (PRSx8) had high cell-type specificity (94.4 ± 3.1%) but resulted in heterogeneous virus transduction of DbH-positive LC neurons (range: 9.2-94.4%). Clozapine-N-oxide (CNO; 1 mg/kg, i.p.), a hM4Di actuator, caused the firing cessation of hM4Di-expressing LC neurons, yet complete inhibition of the entire population of LC neurons was not achieved. Case-based immunohistochemistry revealed that virus injections distal (> 150 µm) to the LC core resulted in partial LC transduction, while proximal (< 50 µm) injections caused neuronal loss due to virus neurotoxicity. Neither the ASR nor PPI differed between the intact and virus-transduced rats. Our results suggest that a residual activity of virus-non-transduced LC neurons might have been sufficient for mediating an unaltered ASR and PPI. Our study highlights the importance of a case-based assessment of the virus efficiency, specificity, and neurotoxicity for targeted cell populations and of considering these factors when interpreting behavioral effects in experiments employing chemogenetic modulation.

2.
Cereb Cortex ; 30(1): 311-325, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31070710

RESUMO

The prepulse inhibition (PPI) of the acoustic startle reflex (ASR), as an index of sensorimotor gating, is one of the most extensively used paradigms in the field of neuropsychiatric disorders. Few studies have examined how prenatal stress (PS) regulates the sensorimotor gating during the lifespan and how PS modifies the development of amyloid-beta (Aß) pathology in brain areas underlying the PPI formation. We followed alternations in corticosterone levels, learning and memory, and the PPI of the ASR measures in APPNL-G-F/NL-G-F offspring of dams exposed to gestational noise stress. In-depth quantifications of the Aß plaque accumulation were also performed at 6 months. The results indicated an age-dependent deterioration of sensorimotor gating, long-lasting PS-induced abnormalities in PPI magnitudes, as well as deficits in spatial memory. The PS also resulted in a higher Aß aggregation predominantly in brain areas associated with the PPI modulation network. The findings suggest the contribution of a PS-induced hypothalamic-pituitary-adrenal (HPA) axis hyperactivity in regulating the PPI modulation substrates leading to the abnormal development of the neural protection system in response to disruptive stimuli. The long-lasting HPA axis dysregulation appears to be the major underlying mechanism in precipitating the Aß deposition, especially in brain areas contributed to the PPI modulation network.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Estimulação Acústica , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Placa Amiloide/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia
3.
Int J Neurosci ; 131(3): 233-238, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32129123

RESUMO

Background: Prenatal stress has been shown to affect the cognition of offspring, including memory and learning abilities.Methods: In the current study, the long-term effects of chronic prenatal exposure to the physical or psychological stress on locomotion and attention were evaluated by using open field test (OFT) and prepulse inhibition (PPI) of the acoustic startle reflex (ASR). In addition, the level of corticosterone was measured after the ASR trial.Results: Male and female rodents that underwent prenatal physical and psychological stress had an augmented velocity in OFT, and only male animals showed an increased ASR. Neither male nor female offsprings had an alteration in the level of corticosterone and PPI values regardless of the stress type.Conclusion: Our results revealed that exposure to stress during the development of fetus increases ASR in a sex-dependent manner. This finding might implicate the effect of prenatal stress on attention in male offspring regardless of the stress type.


Assuntos
Atenção/fisiologia , Locomoção/fisiologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Estresse Psicológico/psicologia , Estimulação Acústica/efeitos adversos , Animais , Corticosterona/sangue , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Ratos , Ratos Wistar , Caracteres Sexuais , Estresse Psicológico/sangue
4.
J Exp Biol ; 223(Pt 5)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165452

RESUMO

The acoustic startle reflex is an oligo-synaptic reflex arc elicited by rapid-onset sounds. Odontocetes evolved a range of specific auditory adaptations to aquatic hearing and echolocation, e.g. the ability to downregulate their auditory sensitivity when emitting clicks. However, it remains unclear whether these adaptations also led to changes of the startle reflex. We investigated reactions to startling sounds in two bottlenose dolphins (Tursiops truncatus) and one false killer whale (Pseudorca crassidens). Animals were exposed to 50 ms, 1/3 octave band noise pulses of varying levels at frequencies of 1, 10, 25 and 32 kHz while positioned in a hoop station. Startle responses were quantified by measuring rapid muscle contractions using a three-dimensional accelerometer attached to the dolphin. Startle magnitude increased exponentially with increasing received levels. Startle thresholds were frequency dependent and ranged from 131 dB at 32 kHz to 153 dB at 1 kHz (re. 1 µPa). Startle thresholds only exceeded masked auditory AEP thresholds of the animals by 47 dB but were ∼82 dB above published behavioural audiograms for these species. We also tested the effect of stimulus rise time on startle magnitude using a broadband noise pulse. Startle responses decreased with increasing rise times from 2 to 100 ms. Models suggested that rise times of 141-220 ms were necessary to completely mitigate startle responses. Our data showed that the startle reflex is conserved in odontocetes and follows similar principles as in terrestrial mammals. These principles should be considered when assessing and mitigating the effects of anthropogenic noise on marine mammals.


Assuntos
Limiar Auditivo , Golfinhos/fisiologia , Reflexo de Sobressalto/fisiologia , Estimulação Acústica/veterinária , Animais , Golfinho Nariz-de-Garrafa/fisiologia , Ecolocação , Feminino , Havaí , Masculino
5.
Int J Neurosci ; 130(11): 1071-1081, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32003272

RESUMO

Background and objectives: Hyperacusis is hypersensitivity and extreme response to the intensity of sound that is tolerable in normal subjects. The mechanisms underlying hyperacusis has not been well understood, specially the role of insular cortex. The aim of this study is to investigate the role of insular cortex in hyperacusis like behavior. Material and methods: The number of 33 male wistar rats weighting 170-250 gr were allocated randomly in three groups; control, sham, and insular lesion. Auditory startle responses (ASR) to different intensities of stimuli (70, 80, 90, 100, and110 dB without background noise as well as 110 dB in the presence of 70, 80 dB background noise) were measured before and up to four weeks after intervention. Results: Data analyses showed an increase in ASR to 100 dB stimulus without background noise one week after insular lesion, and increased responses to other intensities two weeks after lesion. Furthermore, there was a decrease in ASR to 110 dB stimulus with 80 dB background noise two weeks after insular lesion. However, no significant difference was observed in 70 dB background noise. The changes in ASR lasts at least four weeks.Conclusion: The findings indicated that there was an increase in ASR in the absence of background noise following cortical excititoxic lesion limited to insular cortex, while there was a decrease in responses in the presence of background noise which suggests possible increased sensitivity to sound loudness as a hyperacusis-like phenomenon. The study showed a significant relationship between insular cortex lesion and ASR in rats.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Hiperacusia/fisiopatologia , Reflexo de Sobressalto/fisiologia , Estimulação Acústica , Animais , Modelos Animais de Doenças , Masculino , Distribuição Aleatória , Ratos Wistar
6.
Int J Neuropsychopharmacol ; 20(5): 383-391, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927738

RESUMO

Background: Previous studies suggested that opiate withdrawal may increase anxiety and disrupt brain-derived neurotrophic factor function, but the effects of i.v. morphine self-administration on these measures remain unclear. Methods: Adult male Sprague-Dawley rats were implanted with a catheter in the jugular vein. After 1 week of recovery, the animals were allowed to self-administer either i.v. morphine (0.5 mg/kg per infusion, 4 h/d) or saline in the operant conditioning chambers. The acoustic startle reflex and prepulse inhibition were measured at a baseline and on self-administration days 1, 3, 5, and 7 (1- and 3-hour withdrawal). Blood samples were collected on self-administration days 3, 5, and 7 from separate cohorts of animals, and the levels of brain-derived neurotrophic factor and corticosterone were assayed using the enzyme-linked immunosorbent assay method. Results: Compared with the saline group, the morphine self-administration group showed hyper-locomotor activity and reduced defecation during the self-administration. The morphine self-administration increased acoustic startle reflex at 1-hour but not 3-hour withdrawal from morphine and disrupted prepulse inhibition at 3-hour but not 1-hour withdrawal. The blood brain-derived neurotrophic factor levels were decreased in the morphine self-administration group at self-administration days 3 and 5, while the corticosterone levels remained unchanged throughout the study. Conclusions: The current findings suggest that spontaneous withdrawal from i.v. morphine self-administration may have transient effects on acoustic startle, sensorimotor gating, and peripheral brain-derived neurotrophic factor levels, and these changes may contribute to the adverse effects of opiate withdrawal.


Assuntos
Analgésicos Opioides/farmacologia , Fator Neurotrófico Derivado do Encéfalo/sangue , Morfina/farmacologia , Inibição Pré-Pulso/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Estimulação Acústica , Analgésicos Opioides/administração & dosagem , Análise de Variância , Animais , Condicionamento Operante/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Hidrocortisona/sangue , Masculino , Morfina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Autoadministração , Fatores de Tempo
7.
Neurol Sci ; 38(12): 2139-2143, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28963683

RESUMO

The aim of the study was to evaluate the possibility of estimating a startle response and sensorimotor gating based on changes in the range of vertical pressure force of the feet on the ground during a dynamometric examination. The study encompassed 13 healthy and physically fit men (age: 23.3 ± 2.0 years; height: 178.0 ± 6.1 cm; and weight: 76.1 ± 9.0 kg). The inhibitory mechanisms of startle reflex were used as the measure of sensorimotor gating. It was triggered by a strong acoustic stimulus (106 dB SPL, 40 ms), which was preceded by a similar, weaker signal (80 dB SPL, 20 ms). Startle reflex was evaluated using a piezoelectric force platform. The results of the conducted study show that the range of vertical pressure force of the feet caused by the reaction to a strong acoustic stimulus is significantly smaller when this stimulus is preceded by a signal of lower intensity (prepulse). Such assessment is only possible with the participants' eyes open. The generalized startle response of a person may be estimated using a force platform, based on changes in the range of vertical pressure force of the feet on the ground, which are caused by unexpected acoustic stimuli. There is a strong indication that using a force platform to evaluate sensorimotor gating could be used as an alternative to electromyographic examinations.


Assuntos
, Inibição Pré-Pulso , Reflexo de Sobressalto , Percepção Auditiva , Pé/fisiologia , Humanos , Masculino , Estimulação Física , Dados Preliminares , Inibição Pré-Pulso/fisiologia , Pressão , Reflexo de Sobressalto/fisiologia , Percepção Visual , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 111(52): 18751-6, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512532

RESUMO

Chemical communication plays an important role in the social lives of various mammalian species. Some of these chemicals are called pheromones. Rats release a specific odor into the air when stressed. This stress-related odor increases the anxiety levels of other rats; therefore, it is possible that the anxiety-causing molecules are present in the stress-related odorants. Here, we have tried to identify the responsible molecules by using the acoustic startle reflex as a bioassay system to detect anxiogenic activity. After successive fractionation of the stress-related odor, we detected 4-methylpentanal and hexanal in the final fraction that still possessed anxiogenic properties. Using synthetic molecules, we found that minute amounts of the binary mixture, but not either molecule separately, increased anxiety in rats. Furthermore, we determined that the mixture increased a specific type of anxiety and evoked anxiety-related behavioral responses in an experimental model that was different from the acoustic startle reflex. Analyses of neural mechanisms proposed that the neural circuit related to anxiety was only activated when the two molecules were simultaneously perceived by two olfactory systems. We concluded that the mixture is a pheromone that increases anxiety in rats. To our knowledge, this is the first study identifying a rat pheromone. Our results could aid further research on rat pheromones, which would enhance our understanding of chemical communication in mammals.


Assuntos
Aldeídos , Ansiedade , Comportamento Animal/efeitos dos fármacos , Caproatos , Feromônios , Reflexo de Sobressalto/efeitos dos fármacos , Aldeídos/química , Aldeídos/farmacologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/fisiopatologia , Caproatos/química , Caproatos/farmacologia , Masculino , Bulbo Olfatório/fisiopatologia , Feromônios/química , Feromônios/farmacologia , Ratos , Ratos Wistar
9.
Top Stroke Rehabil ; 21(4): 358-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25150668

RESUMO

BACKGROUND: Acoustic startle reflex (ASR) can be used as a tool to examine reticulospinal excitability. The potential role of reticulospinal mechanisms in the development of spasticity has been suggested but not tested. OBJECTIVE: To examine reticulospinal excitability at different stages of motor recovery in patients with chronic stroke using the ASR. METHODS: Sixteen subjects with hemiplegic stroke participated in the study. We examined ASR responses at rest and contralateral motor overflow during voluntary elbow flexion. RESULTS: ASR responses in impaired biceps muscles showed different patterns at different stages. In subjects without spasticity, ASR responses were less frequent (10% on impaired side) and had normal duration (<200 ms). In subjects with spasticity, the responses were more frequent (58.3% on impaired side) and longer lasting (up to 1 minute). However, no correlation between exaggerated reflex responses and Modified Ashworth Scale (MAS) scores was observed. During voluntary elbow flexion on the impaired side, similar positive linear force-electromyogram (EMG) relationships were found in subjects with and without spasticity. Electromyographic activity of the resting nonimpaired limb increased proportionally in subjects with spasticity (r = 0.6313, P = .0004), but no such correlation was found in subjects without spasticity (r = 0.0191, P = .9612). CONCLUSIONS: Preliminary findings of exaggerated ASR responses and associated contralateral overflow only in spastic biceps muscles in patients with chronic stroke suggest the important role of reticulospinal mechanisms in the development of spasticity.


Assuntos
Recuperação de Função Fisiológica , Reflexo de Sobressalto/fisiologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/psicologia , Estimulação Acústica , Adulto , Idoso , Doença Crônica , Interpretação Estatística de Dados , Eletromiografia , Feminino , Hemiplegia/etiologia , Hemiplegia/reabilitação , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Exame Neurológico , Projetos Piloto , Reflexo/fisiologia
10.
Front Hum Neurosci ; 18: 1436156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188409

RESUMO

Introduction: Startle habituation and prepulse inhibition (PPI) are distinct measures of different sensory information processes, yet both result in the attenuation of the startle reflex. Identifying startle habituation and PPI neural mechanisms in humans has mostly evolved from acoustic-focused rodent models. Human functional magnetic resonance imaging (fMRI) studies have used tactile startle paradigms to avoid the confounding effects of gradient-related acoustic noise on auditory paradigms and blood-oxygen-level-dependent (BOLD) measures. This study aimed to examine the neurofunctional basis of acoustic startle habituation and PPI in humans with silent fMRI. Methods: Using silent fMRI and simultaneous electromyography (EMG) to measure startle, the neural correlates of acoustic short-term startle habituation and PPI [stimulus onset asynchronies (SOA) of 60 ms and 120 ms] were investigated in 42 healthy adults (28 females). To derive stronger inferences about brain-behaviour correlations at the group-level, models included EMG-assessed measures of startle habituation (regression slope) or PPI (percentage) as a covariate. A linear temporal modulator was modelled at the individual-level to characterise functional changes in neural activity during startle habituation. Results: Over time, participants showed a decrease in startle response (habituation), accompanied by decreasing thalamic, striatal, insula, and brainstem activity. Startle habituation was associated with the linear temporal modulation of BOLD response amplitude in several regions, with thalamus, insula, and parietal lobe activity decreasing over time, and frontal lobe, dorsal striatum, and posterior cingulate activity increasing over time. The paradigm yielded a small amount of PPI (9-13%). No significant neural activity for PPI was detected. Discussion: Startle habituation was associated with the thalamus, putamen, insula, and brainstem, and with linear BOLD response modulation in thalamic, striatal, insula, parietal, frontal, and posterior cingulate regions. These findings provide insight into the mediation and functional basis of the acoustic primary startle circuit. Instead, whilst reduced compared to conventional MRI, scanner noise may have disrupted prepulse detection and processing, resulting in low PPI and impacting our ability to map its neural signatures. Our findings encourage optimisation of the MRI environment for acoustic PPI-based investigations in humans. Combining EMG and functional neuroimaging methods shows promise for mapping short-term startle habituation in healthy and clinical populations.

11.
Curr Biol ; 34(8): 1605-1620.e5, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38492568

RESUMO

Sound elicits rapid movements of muscles in the face, ears, and eyes that protect the body from injury and trigger brain-wide internal state changes. Here, we performed quantitative facial videography from mice resting atop a piezoelectric force plate and observed that broadband sounds elicited rapid and stereotyped facial twitches. Facial motion energy (FME) adjacent to the whisker array was 30 dB more sensitive than the acoustic startle reflex and offered greater inter-trial and inter-animal reliability than sound-evoked pupil dilations or movement of other facial and body regions. FME tracked the low-frequency envelope of broadband sounds, providing a means to study behavioral discrimination of complex auditory stimuli, such as speech phonemes in noise. Approximately 25% of layer 5-6 units in the auditory cortex (ACtx) exhibited firing rate changes during facial movements. However, FME facilitation during ACtx photoinhibition indicated that sound-evoked facial movements were mediated by a midbrain pathway and modulated by descending corticofugal input. FME and auditory brainstem response (ABR) thresholds were closely aligned after noise-induced sensorineural hearing loss, yet FME growth slopes were disproportionately steep at spared frequencies, reflecting a central plasticity that matched commensurate changes in ABR wave 4. Sound-evoked facial movements were also hypersensitive in Ptchd1 knockout mice, highlighting the use of FME for identifying sensory hyper-reactivity phenotypes after adult-onset hyperacusis and inherited deficiencies in autism risk genes. These findings present a sensitive and integrative measure of hearing while also highlighting that even low-intensity broadband sounds can elicit a complex mixture of auditory, motor, and reafferent somatosensory neural activity.


Assuntos
Audição , Animais , Camundongos , Masculino , Audição/fisiologia , Som , Estimulação Acústica , Feminino , Córtex Auditivo/fisiologia , Camundongos Endogâmicos C57BL , Movimento , Potenciais Evocados Auditivos do Tronco Encefálico
12.
Chem Senses ; 38(8): 661-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23821727

RESUMO

It is widely known that a stressed animal releases specific pheromones, possibly for alarming nearby conspecifics. We previously investigated an alarm pheromone in male rats and found that this alarm pheromone evokes several responses, including increases in the defensive and risk assessment behaviors in a modified open-field test, and enhancement of the acoustic startle reflex. However, the role of the vomeronasal organ in these pheromone effects remains unclear. To clarify this point, vomeronasal organ-excising or sham surgeries were performed in male rats for use in 2 experimental models, after which they were exposed to alarm pheromone. We found that the vomeronasal organ-excising surgery blocked the effects of this alarm pheromone in both the modified open-field test and acoustic startle reflex test. In addition, the results of habituation/dishabituation test and soybean agglutinin binding to the accessory olfactory bulb suggested that the vomeronasal organ-excising surgery completely ablated the vomeronasal organ while preserving the functioning of the main olfactory system. From the above results, we showed that the vomeronasal organ plays an important role in alarm pheromone effects in the modified open-field test and acoustic startle reflex test.


Assuntos
Feromônios/metabolismo , Ratos/fisiologia , Órgão Vomeronasal/fisiologia , Animais , Comportamento Animal , Masculino , Bulbo Olfatório/fisiologia , Lectinas de Plantas/metabolismo , Ratos Wistar , Proteínas de Soja/metabolismo , Estresse Fisiológico , Órgão Vomeronasal/cirurgia
13.
Physiol Behav ; 270: 114290, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423456

RESUMO

Rats emit ultrasonic vocalizations (USV). During aversive situations, rats emit 22-kHz USV, which are considered "alarm calls" and supposed to reflect a negative affective state of the sender. During appetitive situations, rats emit 50-kHz USV, which are believed to reflect a positive affective state. Here, we recorded USV emission in adult male rats during the acoustic startle response test. Our results indicate varied USV emission in both the 22- and 50-kHz USV ranges. Enhanced startle responses were observed in rats with a predominant 22-kHz call profile, supporting the notion that 22-kHz USV emission is associated with a negative affective state.


Assuntos
Ultrassom , Vocalização Animal , Ratos , Masculino , Animais , Vocalização Animal/fisiologia , Reflexo de Sobressalto , Emoções/fisiologia , Afeto
14.
Behav Brain Res ; 438: 114179, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36330905

RESUMO

Prepulse inhibition (PPI) is a reduction of the acoustic startle reflex (ASR) when the startling stimulus is preceded by a weaker and non-startling stimulus (i.e., prepulse). Previous studies have revealed that PPI can be top-down modulated by selective attention to the fear-conditioned prepulse in animals. However, few researchers have tested this assumption in humans. Thus, in this study, the negative emotional-conditioned prepulse (CS+) was used to explore whether it could improve participants' attention, and further improve the PPI. The results showed that the CS+ prepulse increased the PPI only in females, PPI produced by CS+ prepulse was larger in females than in males, and the perceptual spatial attention further improved the PPI in both females and males. The results suggested that the PPI was affected by emotional, perceptual spatial attention, and sex. These findings highlight an additional method to measure top-down attentional regulation of PPI in humans. Which may offer a useful route to enhance the diagnosis of affective disorders, such as anxiety, depression, and post-traumatic stress disorder.


Assuntos
Inibição Pré-Pulso , Reflexo de Sobressalto , Animais , Masculino , Feminino , Humanos , Inibição Pré-Pulso/fisiologia , Estimulação Acústica/métodos , Reflexo de Sobressalto/fisiologia , Medo/fisiologia , Emoções
15.
Front Behav Neurosci ; 17: 1321277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144362

RESUMO

Noise-induced tinnitus is generally associated with hearing impairment caused by traumatic acoustic overexposure. Previous studies in laboratory animals and human subjects, however, have observed differences in tinnitus susceptibility, even among individuals with similar hearing loss. The mechanisms underlying increased sensitivity or, conversely, resistance to tinnitus are still incompletely understood. Here, we used behavioral tests and ABR audiometry to compare the sound-evoked responses of mice that differed in the presence of noise-induced tinnitus. The aim was to find a specific pre-exposure neurophysiological marker that would predict the development of tinnitus after acoustic trauma. Noise-exposed mice were screened for tinnitus-like behavior with the GPIAS paradigm and subsequently divided into tinnitus (+T) and non-tinnitus (-T) groups. Both groups showed hearing loss after exposure, manifested by elevated audiometric thresholds along with reduced amplitudes and prolonged latencies of ABR waves. Prior to exposure, except for a slightly increased slope of growth function for ABR amplitudes in +T mice, the two groups did not show significant audiometric differences. Behavioral measures, such as the magnitude of the acoustic startle response and its inhibition by gap pre-pulse, were also similar before exposure in both groups. However, +T mice showed significantly increased suppression of the acoustic startle response in the presence of background noise of moderate intensity. Thus, increased modulation of startle by background sounds may represent a behavioral correlate of susceptibility to noise-induced tinnitus, and its measurement may form the basis of a simple non-invasive method for predicting tinnitus development in laboratory rodents.

16.
Iran J Child Neurol ; 17(4): 117-136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074929

RESUMO

Objectives: The objective assessment tests overcome the variability of subjective methods. Cortical recordings with gap pre-pulse inhibition of the acoustic startle reflex stimulus have been used as objective tinnitus assessments in humans. This study aims to investigate this possible objective tinnitus test and compare gap-induced inhibition in different stimulus parameters and brain regions. Materials & Methods: Twenty People (18-50 years old) without hearing loss and tinnitus were included. The sound stimuli consisted of continuous background noise with a loud startle tone preceded by a silent gap (20 and 40 ms duration, 120 and 150 ms distance from the startle). The N1-P2 complex amplitude and topoplot maps were extracted in 27-channel cortical response recording after signal processing. Four brain regions of interest (ROI) of anterior-frontal, centro-frontal, right, and left temporal were investigated. Results: The results showed that the maximum inhibition occurred in a 40 ms gap duration and 150 ms distance in all 4 ROIs. In comparing ROIs, the centro-frontal and left temporal regions revealed the most inhibition (p<0.05). The decrease in the amplitude of the N1 and P2 in that region could also be traced in the 100 and 200 ms topoplots. Conclusion: Gap-induced inhibition was observed in all gap-embedded stimuli and all ROIs. However, the 40-150 mode and centro-frontal and left temporal regions had maximum inhibition in normal subjects. It provides a promising tool for objectively assessing tinnitus in humans with particular implications in children.

17.
Neuroscience ; 520: 39-45, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080446

RESUMO

The Zwicker tone illusion - an auditory phantom percept after hearing a notched noise stimulus - can serve as an interesting model for acute tinnitus. Recent mechanistic models suggest that the underlying neural mechanisms of both percepts are similar. To date it is not clear if animals do perceive the Zwicker tone, as up to now no behavioral paradigms are available to objectively assess the presence of this phantom percept. Here we introduce, for the first time, a modified version of the gap pre-pulse inhibition of the acoustic startle reflex (GPIAS) paradigm to test if it is possible to induce a Zwicker tone percept in our rodent model, the Mongolian gerbil. Furthermore, we developed a new aversive conditioning learning paradigm and compare the two approaches. We found a significant increase in the GPIAS effect when presenting a notched noise compared to white noise gap pre-pulse inhibition, which is consistent with the interpretation of a Zwicker tone percept in these animals. In the aversive conditioning learning paradigm, no clear effect could be observed in the discrimination performance of the tested animals. When investigating the first 33% of the correct conditioned responses, an effect of a possible Zwicker tone percept can be seen, i.e. animals show identical behavior as if a pure tone was presented, but the paradigm needs to be further improved. Nevertheless, the results indicate that Mongolian gerbils are able to perceive a Zwicker tone and can serve as a neurophysiological model for human tinnitus generation.


Assuntos
Ilusões , Zumbido , Humanos , Animais , Gerbillinae , Audição , Ruído , Reflexo de Sobressalto/fisiologia , Estimulação Acústica
18.
Hear Res ; 415: 108441, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065507

RESUMO

The acoustic startle reflex (ASR) amplitude can be enhanced or suppressed by noise-induced hearing loss or age-related hearing loss; however, little is known about how the ASR changes when ototoxic drugs destroy outer hair cells (OHCs) and inner hair cells (IHCs). High doses of 2-hydroxypropyl-beta-cyclodextrin (HPßCD), a cholesterol-lowering drug used to treat Niemann-Pick Type disease type C1, initially destroy OHCs and then the IHCs 6-8 weeks later. Adult rats were treated with doses of HPßCD designed to produce a diversity of hair cell lesions and hearing losses. When HPßCD destroyed OHCs and IHCs in the extreme base of the cochlea and caused minimal high-frequency hearing loss, the ASR amplitudes were enhanced at 4-, 8- and 16 kHz. Enhanced ASR occurred during the first few weeks post-treatment when only OHCs were missing; little change in the ASR occurred 6-8-WK post-treatment. If HPßCD destroyed most OHCs and many IHCs in the basal half of the cochlea, high-frequency thresholds increased ∼50 dB, and ASR amplitudes were reduced ∼50% at 4-, 8- and 16-kHz. The ASR amplitude reduction occurred in the first few weeks post-treatment when the OHCs were degenerating. The ASR was largely abolished when most of the OHCs were missing over the basal two-thirds of the cochlea and a 40-50 dB hearing loss was present at most frequencies. These results indicate that high-doses of HPßCD generally lead to a decline in ASR amplitude as OHCs degenerate; however, ASR amplitudes were enhanced in a few cases when hair cell loss was confined to the extreme base of the cochlea.


Assuntos
Ciclodextrinas , Presbiacusia , Animais , Cóclea/patologia , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/patologia , Presbiacusia/patologia , Ratos , Reflexo de Sobressalto
19.
Behav Brain Res ; 430: 113924, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35568075

RESUMO

Prepulse inhibition (PPI) refers to the diminution of the startle reflex to a sudden and intense acoustic stimulus (pulse) when this startle-eliciting pulse is preceded shortly by a weaker prepulse stimulus. PPI is widely used in evaluating the effects of psychomimetic and antipsychotic drugs on sensorimotor gating, but individual differences in PPI expression have received scant attention. We have previously shown that mice and rats exhibiting stronger motor response to the prepulse also exhibit more PPI. It remains unexplored, however, if this between-subjects correlation may be similarly observed across trials from a within-subjects perspective. Here, we mapped the prepulse-elicited response to the diminution of the startle response to the succeeding pulse stimulus, trial-by-trial, across nine prepulse-pulse definitions with varying prepulse and pulse intensities. The resulting within-subjects correlation independently obtained in 113 adult C57BL6 mice revealed that trials registering a stronger prepulse reaction also recorded a larger startle response to the pulse stimulus, indicative of weaker PPI, especially when higher-intensity prepulses were paired with low-intensity pulses. The within- and between-subjects analyses have apparently yielded two contrasting relationships between the direct motor response to the prepulse and the inhibition of subsequent startle reaction induced by the same prepulse. One interpretation is that the within-subjects correlation reflects state-dependent variation, whereas the between-subjects correlation stems from trait-dependent individual variation. Finally, whether our present findings may depend on the nature of the prepulse reaction is further discussed.


Assuntos
Inibição Pré-Pulso , Reflexo de Sobressalto , Estimulação Acústica/métodos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Reflexo de Sobressalto/fisiologia , Filtro Sensorial
20.
Front Neurosci ; 16: 798667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464323

RESUMO

Acoustic startle reflex (ASR) constitutes a reliable, cross-species indicator of sensorimotor and inhibitory mechanisms, showing distinct signature in cognitive aging, sex, and psychopathological characterization. ASR can be modulated by the prepulse inhibition (PPI) paradigm, which comprises the suppression of reactivity to a startling stimulus (pulse) following a weak prepulse (30- to 500-ms time difference), being widely linked to inhibitory capabilities of the sensorimotor system. If the prepulse-pulse tones are more clearly separated (500-2,000 ms), ASR amplitude is enhanced, termed as prepulse facilitation (PPF), reflecting sustained or selective attention. Our study aimed to investigate early-life sensorimotor sex/age differences using Electroencephalographic recordings to measure muscular and neural ASR in a healthy young population. Sixty-three children and adolescents aged 6.2-16.7 years (31 females) took part in the experiment. Neural ASR was assessed by two different analyses, namely, event-related potentials (ERPs) and first-derivative potentials (FDPs). As expected, PPF showed enhanced responses compared with PPI, as indicated by eyeblink, ERP and FDP measures, confirming the gating effect hypothesis. Sex-related differences were reflected in FDPs, with females showing higher ASR than males, suggesting increased levels of poststartle excitability. Intragroup age effects were evaluated via multipredictor regression models, noticing positive correlation between age versus eyeblink and ERP responses. Attention-related ERPs (N100 and P200) showed distinct patterns in PPI versus PPF, potentially indicative for alternative attentional allocation and block-out of sensory overload. Screening measures of participants' neurodevelopmental (assessed by Wechsler Intelligence Scale for Children) and behavioral (assessed by Child Behavior Checklist) markers were also associated with increased N100/P200 responses, presumably indexing synergy between perceptual consistency, personality profiling, and inhibitory performance. Conclusively, modulation of ASR by PPI and PPF is associated with biological sex and internal/external personality traits in childhood and adolescence, potentially useful to guide symptomatology and prevention of psychopathology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa