Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35632330

RESUMO

Frequency combs (FCs)-spectra containing equidistant coherent peaks-have enabled researchers and engineers to measure the frequencies of complex signals with high precision, thereby revolutionising the areas of sensing, metrology and communications and also benefiting the fundamental science. Although mostly optical FCs have found widespread applications thus far, in general FCs can be generated using waves other than light. Here, we review and summarise recent achievements in the emergent field of acoustic frequency combs (AFCs), including phononic FCs and relevant acousto-optical, Brillouin light scattering and Faraday wave-based techniques that have enabled the development of phonon lasers, quantum computers and advanced vibration sensors. In particular, our discussion is centred around potential applications of AFCs in precision measurements in various physical, chemical and biological systems in conditions where using light, and hence optical FCs, faces technical and fundamental limitations, which is, for example, the case in underwater distance measurements and biomedical imaging applications. This review article will also be of interest to readers seeking a discussion of specific theoretical aspects of different classes of AFCs. To that end, we support the mainstream discussion by the results of our original analysis and numerical simulations that can be used to design the spectra of AFCs generated using oscillations of gas bubbles in liquids, vibrations of liquid drops and plasmonic enhancement of Brillouin light scattering in metal nanostructures. We also discuss the application of non-toxic room-temperature liquid-metal alloys in the field of AFC generation.

2.
Adv Mater ; 36(5): e2305434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37660285

RESUMO

The compact size, scalability, and strongly confined fields in integrated photonic devices enable new functionalities in photonic networking and information processing, both classical and quantum. Gallium phosphide (GaP) is a promising material for active integrated photonics due to its high refractive index, wide bandgap, strong nonlinear properties, and large acousto-optic figure of merit. This study demonstrates that silicon-lattice-matched boron-doped GaP (BGaP), grown at the 12-inch wafer scale, provides similar functionalities as GaP. BGaP optical resonators exhibit intrinsic quality factors exceeding 25,000 and 200,000 at visible and telecom wavelengths, respectively. It further demonstrates the electromechanical generation of low-loss acoustic waves and an integrated acousto-optic (AO) modulator. High-resolution spatial and compositional mapping, combined with ab initio calculations, indicate two candidates for the excess optical loss in the visible band: the silicon-GaP interface and boron dimers. These results demonstrate the promise of the BGaP material platform for the development of scalable AO technologies at telecom and provide potential pathways toward higher performance at shorter wavelengths.

3.
Nanophotonics ; 13(1): 63-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235070

RESUMO

Several optical microscopy methods are now available for characterizing scientific and industrial processes at sub-micron resolution. However, they are often ill-suited for imaging rapid events. Limited by the trade-off between camera frame-rate and sensitivity, or the need for mechanical scanning, current microscopes are optimized for imaging at hundreds of frames-per-second (fps), well-below what is needed in processes such as neuronal signaling or moving parts in manufacturing lines. Here, we present a scan-less technology that allows sub-micrometric imaging at thousands of fps. It is based on combining a single-pixel camera with parallelized encoded illumination. We use two acousto-optic deflectors (AODs) placed in a Mach-Zehnder interferometer and drive them simultaneously with multiple and unique acoustic frequencies. As a result, orthogonal light stripes are obtained that interfere with the sample plane, forming a two-dimensional array of flickering spots - each with its modulation frequency. The light from the sample is collected with a single photodiode that, after spectrum analysis, allows for image reconstruction at speeds only limited by the AOD's bandwidth and laser power. We describe the working principle of our approach, characterize its imaging performance as a function of the number of pixels - up to 400 × 400 - and characterize dynamic events at 5000 fps.

4.
Biomed Eng Lett ; 13(1): 49-56, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36711164

RESUMO

Acousto-optics imaging (AOI) is a hybrid imaging modality that is capable of mapping the light fluence rate in deep tissue by local ultrasound modulation of the diffused photons. Since the intensity of the modulated photons is relatively low, AOI systems often rely on high-gain photodetectors, e.g. photomultiplier tubes (PMTs), which limit scalability due to size and cost and may significantly increase the relative shot-noise in the detected signal due to low quantum yields or gain noise. In this work, we have developed a homodyne AOI scheme in which the modulated photons are amplified by interference with a reference beam, enabling their detection with a single low-gain photodetector in reflection-mode configuration. We experimentally demonstrate our approach with a silicon photodiode, achieving over a 4-fold improvement in SNR in comparison to a PMT-based setup. The increased SNR manifested in lower background noise level thus enabling deeper imaging depths. The use of a fiber-based configuration enables the integration of our scheme in a hand-held AOI probe.

5.
Front Optoelectron ; 16(1): 21, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712991

RESUMO

The results of an optoelectronic system-frequency-shifted feedback (FSF) laser experimental examination are presented. The considered FSF laser is seeded only with optical amplifier spontaneous emission (ASE) and operates in the mode-locked regime, whereby the output radiation is sequence of short pulses with a repetition rate determined by the delay time in its optical feedback circuit. In the frequency domain, the spectrum of such a pulse sequence is an optical frequency comb (OFC). These OFCs we call initial. We consider the possibility of tunable acousto-optic (AO) dual and quad-comb frequency spacing downconversion in the FSF laser seeded with ASE and operating in the mode-locked regime. The examined system applies a single frequency shifting loop with single AO tunable filter as the frequency shifter that is fed with several radio frequency signals simultaneously. The initial OFCs with frequency spacing of about 6.5 MHz may be obtained in the wide spectral range and their width, envelope shape and position in the optical spectrum may be tuned. The dual-combs are obtained with a pair of initial OFCs aroused by two various ultrasound waves in the acousto-optic tunable filter (AOTF). The dual-combs frequency spacing is determined by the frequency difference of the signals applied to the AOTF piezoelectric transducer and can be tuned simply. The quad-combs are obtained with three initial OFCs, forming a pair of dual-combs, appearing when three ultrasound frequencies feed the AOTF transducer. The quad-combs frequency spacing is defined by the difference between the frequency spacing of dual-combs. Quad-combs with more than 5000 spectral lines and tunable frequency spacing are observed. The successive frequency downconversion gives the possibility to reduce the OFC frequency spacing form several MHz for initial OFC to tens of kHz for quad-combs.

6.
Materials (Basel) ; 15(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36431668

RESUMO

Monoclinic potassium rare-earth crystals are known as efficient materials for solid-state lasers and acousto-optic modulators. A number of specific configurations for acousto-optic devices based on those crystals have recently been proposed, but the acousto-optic effect of those crystals has only been analyzed fragmentarily for some interaction directions. In this work, we numerically searched for the global maxima of an acousto-optic figure of merit for isotropic diffraction in KGd(WO4)2 and KY(WO4)2 crystals. It was demonstrated that the global maxima of the acousto-optic figure of merit in those crystals occur in the slow optical mode propagating along the crystal's twofold symmetry axis and in the acoustic wave propagating orthogonally, both for quasi-longitudinal and quasi-shear acoustic modes. The proposed calculation method can be readily used for the optimization of the acousto-optic interaction geometry in crystals with arbitrary symmetry.

7.
Biosensors (Basel) ; 12(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36005019

RESUMO

Gas bubbles present in liquids underpin many natural phenomena and human-developed technologies that improve the quality of life. Since all living organisms are predominantly made of water, they may also contain bubbles-introduced both naturally and artificially-that can serve as biomechanical sensors operating in hard-to-reach places inside a living body and emitting signals that can be detected by common equipment used in ultrasound and photoacoustic imaging procedures. This kind of biosensor is the focus of the present article, where we critically review the emergent sensing technologies based on acoustically driven oscillations of bubbles in liquids and bodily fluids. This review is intended for a broad biosensing community and transdisciplinary researchers translating novel ideas from theory to experiment and then to practice. To this end, all discussions in this review are written in a language that is accessible to non-experts in specific fields of acoustics, fluid dynamics and acousto-optics.


Assuntos
Modelos Teóricos , Qualidade de Vida , Acústica , Humanos , Ultrassonografia
8.
Ultrasonics ; 112: 106335, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33395592

RESUMO

The method of quasicollinear acousto-optic tunable filters (AOTFs) piezoelectric transducer dimensions optimization is presented. The AOTFs with large interaction length apply the bulk acoustic wave (BAW) reflection from the input optical facet. Optimization is based on spectral approach to simulation of the BAW field in anisotropic media and Raman-Nath equations numerically solved for the inhomogeneous acoustic field. It was found that variation of the transducer dimensions can minimize RF power consumption of the AOTF. Comparison of the optimized transducer dimensions with those commonly used in quasicollinear paratellurite AOTFs showed that it is possible to improve the AOTF energy efficiency in about 2 times. It was shown that acoustic field simulation results obtained for one AOTF geometry can be applied to the other geometries but for equivalent frequency providing the same ultrasound beam ray spectrum width. It was also shown that when choosing the quasicollinear AOTF with reflection geometry, one should not rely only on the AO figure of merit value, since the energy efficiency of such AOTF type will be determined by the product of the AO figure of merit and the AOTF efficiency, which takes into account the change in the acoustic beam width in the reflection process. The results aim at improving the design of AOTFs for ultrashort laser pulse shaping.

9.
Materials (Basel) ; 14(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477715

RESUMO

This paper presents the results of theoretical and experimental studies of anisotropic acousto-optic interaction in a spatially periodical acoustic field created by a phased-array transducer with antiphase excitation of adjacent sections. In this case, contrary to the nonsectioned transducer, light diffraction is absent when the optical beam falls on the phased-array cell at the Bragg angle. However, the diffraction takes place at some other angles (called "optimal" here), which are situated on the opposite sides to the Bragg angle. Our calculations show that the diffraction efficiency can reach 100% at these optimal angles in spite of a noticeable acousto-optic phase mismatch. This kind of acousto-optic interaction possesses a number of interesting regularities which can be useful for designing acousto-optic devices of a new type. Our experiments were performed with a paratellurite (TeO2) cell in which a shear acoustic mode was excited at a 9∘ angle to the crystal plane (001). The piezoelectric transducer had to nine antiphase sections. The efficiency of electric to acoustic power conversion was 99% at the maximum frequency response, and the ultrasound excitation band extended from 70 to 160 MHz. The experiments have confirmed basic results of the theoretical analysis.

10.
Nanomaterials (Basel) ; 11(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835895

RESUMO

Wide-range continuous spatial variation of the film composition in lateral compositionally graded epitaxial films requires the development of high throughput measurement techniques for their local and non-destructive characterization with the highest possible spatial resolution. Here we report on the first application of the picosecond laser ultrasonics (PLU) technique for the evaluation of acoustical and optical parameters of lateral compositionally graded film, the Ba1-xSrxTiO3 (0 ≤ x ≤ 1) material library. The film was not dedicatedly prepared for its opto-acousto-optic evaluation by PLU, exhibiting significant lateral variations in thickness and surface roughness. Therefore, the achieved measurements of the sound velocity and of the optical refractive index, and characterization of the surface roughness confirm the robustness of the PLU technique for thin film evaluation. We hope that the first measurements of the acoustical and optical properties of epitaxial grown Ba1-xSrxTiO3 (0 ≤ x ≤ 1) by PLU technique accomplished here provide the parameters required for more extended predictive design of the phononic, photonic and phoxonic mirrors and cavities with superior properties/functionalities for novel multifunctional nanodevices.

11.
J Biomed Opt ; 25(2): 1-12, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32103649

RESUMO

SIGNIFICANCE: Ultrasound-assisted optical imaging techniques, such as ultrasound-modulated optical tomography, allow for imaging deep inside scattering media. In these modalities, a fraction of the photons passing through the ultrasound beam is modulated. The efficiency by which the photons are converted is typically referred to as the ultrasound modulation's "tagging efficiency." Interestingly, this efficiency has been defined in varied and discrepant fashion throughout the scientific literature. AIM: The aim of this study is the ultrasound tagging efficiency in a manner consistent with its definition and experimentally verify the contributive (or noncontributive) relationship between the mechanisms involved in the ultrasound optical modulation process. APPROACH: We adopt a general description of the tagging efficiency as the fraction of photons traversing an ultrasound beam that is frequency shifted (inclusion of all frequency-shifted components). We then systematically studied the impact of ultrasound pressure and frequency on the tagging efficiency through a balanced detection measurement system that measured the power of each order of the ultrasound tagged light, as well as the power of the unmodulated light component. RESULTS: Through our experiments, we showed that the tagging efficiency can reach 70% in a scattering phantom with a scattering anisotropy of 0.9 and a scattering coefficient of 4 mm - 1 for a 1-MHz ultrasound with a relatively low (and biomedically acceptable) peak pressure of 0.47 MPa. Furthermore, we experimentally confirmed that the two ultrasound-induced light modulation mechanisms, particle displacement and refractive index change, act in opposition to each other. CONCLUSION: Tagging efficiency was quantified via simulation and experiments. These findings reveal avenues of investigation that may help improve ultrasound-assisted optical imaging techniques.


Assuntos
Imagem Óptica/métodos , Espalhamento de Radiação , Ultrassonografia/métodos , Anisotropia , Simulação por Computador , Óptica e Fotônica , Imagens de Fantasmas
12.
Front Neural Circuits ; 14: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612514

RESUMO

Determining how neurons transform synaptic input and encode information in action potential (AP) firing output is required for understanding dendritic integration, neural transforms and encoding. Limitations in the speed of imaging 3D volumes of brain encompassing complex dendritic arbors in vivo using conventional galvanometer mirror-based laser-scanning microscopy has hampered fully capturing fluorescent sensors of activity throughout an individual neuron's entire complement of synaptic inputs and somatic APs. To address this problem, we have developed a two-photon microscope that achieves high-speed scanning by employing inertia-free acousto-optic deflectors (AODs) for laser beam positioning, enabling random-access sampling of hundreds to thousands of points-of-interest restricted to a predetermined neuronal structure, avoiding wasted scanning of surrounding extracellular tissue. This system is capable of comprehensive imaging of the activity of single neurons within the intact and awake vertebrate brain. Here, we demonstrate imaging of tectal neurons within the brains of albino Xenopus laevis tadpoles labeled using single-cell electroporation for expression of a red space-filling fluorophore to determine dendritic arbor morphology, and either the calcium sensor jGCaMP7s or the glutamate sensor iGluSnFR as indicators of neural activity. Using discrete, point-of-interest scanning we achieve sampling rates of 3 Hz for saturation sampling of entire arbors at 2 µm resolution, 6 Hz for sequentially sampling 3 volumes encompassing the dendritic arbor and soma, and 200-250 Hz for scanning individual planes through the dendritic arbor. This system allows investigations of sensory-evoked information input-output relationships of neurons within the intact and awake brain.


Assuntos
Encéfalo/crescimento & desenvolvimento , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/fisiologia , Estimulação Luminosa/métodos , Colículos Superiores/fisiologia , Vigília/fisiologia , Estimulação Acústica/métodos , Animais , Química Encefálica/fisiologia , Potenciais Evocados Visuais/fisiologia , Neurônios/química , Fenômenos Ópticos , Colículos Superiores/química , Fatores de Tempo , Xenopus laevis
13.
Materials (Basel) ; 12(11)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163572

RESUMO

The optical behavior exhibited by bimetallic nanoparticles was analyzed by the influence of ultrasonic and nonlinear optical waves in propagation through the samples contained in an ethanol suspension. The Au-Pt nanoparticles were prepared by a sol-gel method. Optical characterization recorded by UV-vis spectrophotometer shows two absorption peaks correlated to the synergistic effects of the bimetallic alloy. The structure and nanocrystalline nature of the samples were confirmed by Scanning Transmission Electron Microscopy with X-ray energy dispersive spectroscopy evaluations. The absorption of light associated with Surface Plasmon Resonance phenomena in the samples was modified by the dynamic influence of ultrasonic effects during the propagation of optical signals promoting nonlinear absorption and nonlinear refraction. The third-order nonlinear optical response of the nanoparticles dispersed in the ethanol-based fluid was explored by nanosecond pulses at 532 nm. The propagation of high-frequency sound waves through a nanofluid generates a destabilization in the distribution of the nanoparticles, avoiding possible agglomerations. Besides, the influence of mechanical perturbation, the container plays a major role in the resonance and attenuation effects. Ultrasound interactions together to nonlinear optical phenomena in nanofluids is a promising alternative field for a wide of applications for modulating quantum signals, sensors and acousto-optic devices.

14.
J Biophotonics ; 11(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28681970

RESUMO

We report the use of ultrasound modulated optical tomography (UOT) with heterodyne parallel detection to locally sense and image blood flow deep inside a highly scattering medium. We demonstrate that the UOT signal is sensitive to the speed of the blood flow in the ultrasound focus and present an analytical model that relates UOT signals to the optical properties (i. e. scattering coefficient, anisotropy, absorption, and flow speed) of the blood and the background medium. We found an excellent agreement between the experimental data and the analytical model. By varying the integration time of the camera in our setup, we were able to spatially resolve blood flow in a scattering medium with a lateral resolution of 1.5 mm.


Assuntos
Circulação Sanguínea , Tomografia Óptica , Ondas Ultrassônicas , Imagens de Fantasmas
15.
Ultrasonics ; 88: 207-212, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29702267

RESUMO

The paper proposes a design of acousto-optic cell applying backward collinear interaction and acoustic mode transformation in a KRS-5 crystal. This cell may serve as an acousto-optic tunable filter for far-infrared spectral range and is able to operate both with collimated optical beams and with divergent beams forming images. The problem of acoustic mode transformation by wave reflection from the crystal facet away from symmetry planes has been solved. Polarization properties of the backward collinear interaction in optically isotropic media are discussed.

16.
Biomed Opt Express ; 9(4): 1664-1679, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29675309

RESUMO

In vivo imaging of self-illuminating bio-and chemiluminescent reporters is used to observe the physiology of small animals. However, strong light scattering by biological tissues results in poor spatial resolution of the optical imaging, which also degrades the quantitative accuracy. To overcome this challenging problem, focused ultrasound is used to modulate the light from the reporter at the ultrasound frequency. This produces an ultrasound switchable light 'beacon' that reduces the influence of light scattering in order to improve spatial resolution. The experimental results demonstrate that apart from light modulation at the ultrasound frequency (AC signal at 3.5 MHz), ultrasound also increases the DC intensity of the reporters. This is shown to be due to a temperature rise caused by insonification that was minimized to be within acceptable mammalian tissue safety thresholds by adjusting the duty cycle of the ultrasound. Line scans of bio-and chemiluminescent objects embedded within a scattering medium were obtained using ultrasound modulated (AC) and ultrasound enhanced (DC) signals. Lateral resolution is improved by a factor of 12 and 7 respectively, as compared to conventional CCD imaging. Two chemiluminescent sources separated by ~10 mm at ~20 mm deep inside a 50 mm thick chicken breast have been successfully resolved with an average signal-to-noise ratio of approximately 8-10 dB.

17.
J Biomed Opt ; 22(10): 1-14, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29052372

RESUMO

Photoacoustic tomography (PAT) is emerging as a potentially important aid for breast cancer detection. Well-validated tissue-simulating phantoms are needed for objective, quantitative, and physically realistic testing for system development. Prior reported PAT phantoms with homogenous structures do not incorporate the irregular layered structure of breast tissue. To assess the impact of this simplification, we design and construct two-layer breast phantoms incorporating vessel-simulating inclusions and realistic undulations at the fat/fibroglandular tissue interface. The phantoms are composed of custom poly(vinyl chloride) plastisol formulations mimicking the acoustic properties of two breast tissue types and tissue-relevant similar optical properties. Resulting PAT images demonstrate that in tissue with acoustic heterogeneity, lateral size of imaging targets is sensitive to the choice of sound speed in image reconstruction. The undulating boundary can further degrade a target's lateral size due to sound speed variation in tissue and refraction of sound waves at the interface. The extent of this degradation is also influenced by the geometric relationship between an absorber and the boundary. Results indicate that homogeneous phantom matrixes may underestimate the degradation of PAT image quality in breast tissue, whereas heterogeneous phantoms can provide more realistic testing through improved reproduction of spatial variations in physical properties.


Assuntos
Mama/diagnóstico por imagem , Imagens de Fantasmas/normas , Técnicas Fotoacústicas , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Tomografia/normas
18.
Micromachines (Basel) ; 8(11)2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30400510

RESUMO

A strong influence of mechanical action in nonlinear optical transmittance experiments with bimetallic nanoparticles integrated by gold and platinum was observed. The nanostructured samples were synthesized by a sol-gel method and contained in an ethanol suspension. UV-VIS spectroscopy evaluations, Transmission electron microscopy studies and input-output laser experiments were characterized. A two-photon absorption effect was induced by nanosecond pulses at 532 nm wavelength with an important contribution from the plasmonic response of the nanomaterials. All-optical identification of acoustical waves was remarkably improved by optical nonlinearities. High sensitivity for instrumentation of mechano-optical signals sensing particular fluids was demonstrated by using a variable carbon dioxide incorporation to the system.

19.
Biomed Opt Express ; 6(1): 63-71, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25657875

RESUMO

Tissue optical and mechanical properties are correlated to tissue pathologic changes. This manuscript describes a dual-mode ultrasound modulated optical imaging system capable of sensing local optical and mechanical properties in reflection geometry. The optical characterisation was achieved by the acoustic radiation force assisted ultrasound modulated optical tomography (ARF-UOT) with laser speckle contrast detection. Shear waves generated by the ARF were also tracked optically by the same system and the shear wave speed was used for the elasticity measurement. Tissue mimicking phantoms with multiple inclusions buried at 11 mm depth were experimentally scanned with the dual-mode system. The inclusions, with higher optical absorption and/or higher stiffness than background, were identified based on the dual results and their stiffnesses were quantified. The system characterises both optical and mechanical properties of the inclusions compared with the ARF-UOT or the elasticity measurement alone. Moreover, by detecting the backward scattered light in reflection detection geometry, the system is more suitable for clinical applications compared with transmission geometry.

20.
Biomed Opt Express ; 6(6): 1954-62, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26114021

RESUMO

Shear wave speed is quantitatively related to tissue viscoelasticity. Previously we reported shear wave tracking at centimetre depths in a turbid optical medium using laser speckle contrast detection. Shear wave progression modulates displacement of optical scatterers and therefore modulates photon phase and changes the laser speckle patterns. Time-resolved charge-coupled device (CCD)-based speckle contrast analysis was used to track shear waves and measure the time-of-flight of shear waves for speed measurement. In this manuscript, we report a new observation of the laser speckle contrast difference signal for dual shear waves. A modulation of CCD speckle contrast difference was observed and simulation reproduces the modulation pattern, suggesting its origin. Both experimental and simulation results show that the dual shear wave approach generates an improved definition of temporal features in the time-of-flight optical signal and an improved signal to noise ratio with a standard deviation less than 50% that of individual shear waves. Results also show that dual shear waves can correct the bias of shear wave speed measurement caused by shear wave reflections from elastic boundaries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa