Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vet Ophthalmol ; 23(1): 160-170, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31441218

RESUMO

Equine recurrent uveitis (ERU) is an immune-mediated disease causing repeated or persistent inflammatory episodes which can lead to blindness. Currently, there is no cure for horses with this disease. Mesenchymal stem cells (MSCs) are effective at reducing immune cell activation in vitro in many species, making them a potential therapeutic option for ERU. The objectives of this study were to define the lymphocyte phenotype of horses with ERU and to determine how MSCs alter T-cell phenotype in vitro. Whole blood was taken from 7 horses with ERU and 10 healthy horses and peripheral blood mononuclear cells were isolated. The markers CD21, CD3, CD4, and CD8 were used to identify lymphocyte subsets while CD25, CD62L, Foxp3, IFNγ, and IL10 were used to identify T-cell phenotype. Adipose-derived MSCs were expanded, irradiated (to control proliferation), and incubated with CD4+ T-cells from healthy horses, after which lymphocytes were collected and analyzed via flow cytometry. The percentages of T-cells and B-cells in horses with ERU were similar to normal horses. However, CD4+ T-cells from horses with ERU expressed higher amounts of IFNγ indicating a pro-inflammatory Th1 phenotype. When co-incubated with MSCs, activated CD4+ T-cells reduced expression of CD25, CD62L, Foxp3, and IFNγ. MSCs had a lesser ability to decrease activation when cell-cell contact or prostaglandin signaling was blocked. MSCs continue to show promise as a treatment for ERU as they decreased the CD4+ T-cell activation phenotype through a combination of cell-cell contact and prostaglandin signaling.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Doenças dos Cavalos/patologia , Células-Tronco Mesenquimais/fisiologia , Uveíte/veterinária , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Técnicas de Cocultura , Regulação da Expressão Gênica , Cavalos , Interferon gama , Subunidade alfa de Receptor de Interleucina-2 , Selectina L/genética , Selectina L/metabolismo , Uveíte/patologia
2.
Front Genet ; 13: 849422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711924

RESUMO

Diffuse large B cell lymphoma (DLBCL) is a group of biologically heterogeneous tumors with different prognoses. The tumor microenvironment plays a vital role in the tumorigenesis and development of DLBCL, and activated memory CD4+ T cells are an essential component of immunological cells in the lymphoma microenvironment. So far, there are few reports about activated memory CD4+T cells infiltration and related genes in the DLBCL tumor microenvironment. This study obtained the mRNA expression profile information of the testing GSE87371 dataset and another six validation datasets (GSE53786, GSE181063, GSE10846, GSE32918, GSE32018, GSE9327, GSE3892, TCGA-DLBC) from the GEO and TCGA databases. Weighted Gene Co-expression Network Analysis (WGCNA) screened gene module associated with activated memory CD4+ T cells infiltration. CIBERSORT and TIMER (immune cells infiltrating estimation analysis tools) were used to identify the relationship between activated memory CD4+ T cells and genes associated with immune infiltrating cells in the tumor microenvironment. The least absolute shrinkage and selection operator (LASSO) built the risk prediction model and verified it using nomogram and Kaplan-Meier analysis. Further functional characterization includes Gene Ontology, KEGG pathway analysis and Gene Set Enrichment Analysis (GSEA) to investigate the role and underlying mechanisms of these genes. These results suggest that the expression of FCER1G can reflect the invasion of activated memory CD4+ T cells in DLBCL, which provides a new idea for studying the tumor microenvironment and may become a potential predictive biomarker for the assessment of DLBCL.

3.
Front Immunol ; 11: 616898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584707

RESUMO

The antigen-independent, strong proliferative responses of naive CD8+ T cells have been well demonstrated in a particular strain of mice lacking IL-2 receptors. This type of proliferation is mainly driven by common gamma-chain (γc) cytokines, such as IL-2, IL-7, and IL-15, present at abnormally high levels in these mice. Similarly, in the present study, we showed that mice lacking Janus kinase 3 (Jak3), a tyrosine kinase crucial for γc cytokine signaling, could induce strong proliferation of adoptively transferred naive CD8+ T cells. This proliferation was also independent of antigenic stimulation, but heavily dependent on IL-2, as evidenced by the failure of proliferation of adoptively transferred IL-2 receptor alpha- and beta-chain-deficient naive CD8+ T cells. Consistent with this, Jak3-/- mice showed elevated serum levels of IL-2 compared to wild-type mice, and interestingly, IL-2 production was due to high levels of accumulation of activated CD4+ T cells in Jak3-/- mice along with defective CD4+ T regulatory cells. Collectively, these findings reveal previously unidentified unique immune contexts of Jak3-/- mice that cause robust IL-2-driven T cell expansion and have a clinical implication for designing a treatment strategy for human patients with loss-of-function genetic mutations of Jak3.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-2/imunologia , Janus Quinase 3/deficiência , Janus Quinase 3/imunologia , Ativação Linfocitária/imunologia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa