Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.163
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(27): e2219558120, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364104

RESUMO

Evolution in time-varying environments naturally leads to adaptable biological systems that can easily switch functionalities. Advances in the synthesis of environmentally responsive materials therefore open up the possibility of creating a wide range of synthetic materials which can also be trained for adaptability. We consider high-dimensional inverse problems for materials where any particular functionality can be realized by numerous equivalent choices of design parameters. By periodically switching targets in a given design algorithm, we can teach a material to perform incompatible functionalities with minimal changes in design parameters. We exhibit this learning strategy for adaptability in two simulated settings: elastic networks that are designed to switch deformation modes with minimal bond changes and heteropolymers whose folding pathway selections are controlled by a minimal set of monomer affinities. The resulting designs can reveal physical principles, such as nucleation-controlled folding, that enable such adaptability.

2.
Proc Natl Acad Sci U S A ; 120(42): e2305427120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812703

RESUMO

As heatwaves become more frequent, intense, and longer-lasting due to climate change, the question of breaching thermal limits becomes pressing. A wet-bulb temperature (Tw) of 35 °C has been proposed as a theoretical upper limit on human abilities to biologically thermoregulate. But, recent-empirical-research using human subjects found a significantly lower maximum Tw at which thermoregulation is possible even with minimal metabolic activity. Projecting future exposure to this empirical critical environmental limit has not been done. Here, using this more accurate threshold and the latest coupled climate model results, we quantify exposure to dangerous, potentially lethal heat for future climates at various global warming levels. We find that humanity is more vulnerable to moist heat stress than previously proposed because of these lower thermal limits. Still, limiting warming to under 2 °C nearly eliminates exposure and risk of widespread uncompensable moist heatwaves as a sharp rise in exposure occurs at 3 °C of warming. Parts of the Middle East and the Indus River Valley experience brief exceedances with only 1.5 °C warming. More widespread, but brief, dangerous heat stress occurs in a +2 °C climate, including in eastern China and sub-Saharan Africa, while the US Midwest emerges as a moist heat stress hotspot in a +3 °C climate. In the future, moist heat extremes will lie outside the bounds of past human experience and beyond current heat mitigation strategies for billions of people. While some physiological adaptation from the thresholds described here is possible, additional behavioral, cultural, and technical adaptation will be required to maintain healthy lifestyles.


Assuntos
Aquecimento Global , Transtornos de Estresse por Calor , Humanos , Mudança Climática , Temperatura , Resposta ao Choque Térmico , Temperatura Alta
3.
Mol Cell ; 66(5): 711-720.e3, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28529057

RESUMO

The multidomain CCCTC-binding factor (CTCF), containing a tandem array of 11 zinc fingers (ZFs), modulates the three-dimensional organization of chromatin. We crystallized the human CTCF DNA-binding domain in complex with a known CTCF-binding site. While ZF2 does not make sequence-specific contacts, each finger of ZF3-7 contacts three bases of the 15-bp consensus sequence. Each conserved nucleotide makes base-specific hydrogen bonds with a particular residue. Most of the variable base pairs within the core sequence also engage in interactions with the protein. These interactions compensate for deviations from the consensus sequence, allowing CTCF to adapt to sequence variations. CTCF is sensitive to cytosine methylation at position 2, but insensitive at position 12 of the 15-bp core sequence. These differences can be rationalized structurally. Although included in crystallizations, ZF10 and ZF11 are not visible, while ZF8 and ZF9 span the backbone of the DNA duplex, conferring no sequence specificity but adding to overall binding stability.


Assuntos
Metilação de DNA , DNA/metabolismo , Proteínas Repressoras/metabolismo , 5-Metilcitosina/metabolismo , Sítios de Ligação , Fator de Ligação a CCCTC , Clonagem Molecular , Cristalografia por Raios X , DNA/química , DNA/genética , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Relação Estrutura-Atividade , Repetições de Trinucleotídeos , Dedos de Zinco
4.
Plant J ; 113(1): 145-159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453190

RESUMO

Structural variations (SVs) are critical factors affecting genome evolution and important traits. However, identification results and functional analyses of SVs in upland cotton are rare. Here, based on the genetic relationships, breeding history and cumulative planting area of upland cotton in China, nine predominant cultivars from the past 60 years (1950s-2010s) were selected for long read sequencing to uncover genic variations and breeding improvement targets for this crop. Based on the ZM24 reference genome, 0.88-1.47 × 104 SVs per cultivar were identified, and an SV set was constructed. SVs affected the expression of a large number of genes during fiber elongation, and a transposable element insertion resulted in the glandless phenotype in upland cotton. Six widespread inversions were identified based on nine draft genomes and high-throughput chromosome conformation capture data. Multiple haplotype blocks that were always associated with aggregated SVs were demonstrated to play a pivotal role in the agronomic traits of upland cotton and drove its adaptation to the northern planting region. Exotic introgression was the source of these haplotype blocks and increased the genetic diversity of upland cotton. Our results enrich the genome resources of upland cotton, and the identified SVs will promote genetic and breeding research in cotton.


Assuntos
Melhoramento Vegetal , Locos de Características Quantitativas , Fenótipo , Haplótipos , Alelos , Gossypium/genética , Fibra de Algodão
5.
BMC Genomics ; 25(1): 681, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982349

RESUMO

Analyzing the genetic diversity and selection characteristics of sheep (Ovis aries) holds significant value in understanding their environmental adaptability, enhancing breeding efficiency, and achieving effective conservation and rational utilization of genetic resources. In this study, we utilized Illumina Ovine SNP 50 K BeadChip data from four indigenous sheep breeds from the southern margin of the Taklamakan Desert (Duolang sheep: n = 36, Hetian sheep: n = 74, Kunlun sheep: n = 27, Qira black sheep: n = 178) and three foreign meat sheep breeds (Poll Dorset sheep: n = 105, Suffolk sheep: n = 153, Texel sheep: n = 150) to investigate the population structure, genetic diversity, and genomic signals of positive selection within the indigenous sheep. According to the Principal component analysis (PCA), the Neighbor-Joining tree (NJ tree), and Admixture, we revealed distinct clustering patterns of these seven sheep breeds based on their geographical distribution. Then used Cross Population Extended Haplotype Homozygosity (XP-EHH), Fixation Index (FST), and Integrated Haplotype Score (iHS), we identified a collective set of 32 overlapping genes under positive selection across four indigenous sheep breeds. These genes are associated with wool follicle development and wool traits, desert environmental adaptability, disease resistance, reproduction, and high-altitude adaptability. This study reveals the population structure and genomic selection characteristics in the extreme desert environments of native sheep breeds from the southern edge of the Taklimakan Desert, providing new insights into the conservation and sustainable use of indigenous sheep genetic resources in extreme environments. Additionally, these findings offer valuable genetic resources for sheep and other mammals to adapt to global climate change.


Assuntos
Clima Desértico , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Ovinos/genética , Genética Populacional , Haplótipos , Variação Genética , Cruzamento
6.
BMC Genomics ; 25(1): 258, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454325

RESUMO

The interactions between the rumen microbiota and the host are crucial for the digestive and absorptive processes of ruminants, and they are heavily influenced by the climatic conditions of their habitat. Owing to the harsh conditions of the high-altitude habitat, little is known about how ruminants regulate the host transcriptome and the composition of their rumen microbiota. Using the model species of goats, we examined the variations in the rumen microbiota, transcriptome regulation, and climate of the environment between high altitude (Lhasa, Xizang; 3650 m) and low altitude (Chengdu, Sichuan, China; 500 m) goats. The results of 16 S rRNA sequencing revealed variations in the abundance, diversity, and composition of rumen microbiota. Papillibacter, Quinella, and Saccharofermentans were chosen as potential microbes for the adaptation of Xizang goats to the harsh climate of the plateau by the Spearman correlation study of climate and microbiota. Based on rumen transcriptome sequencing analysis, 244 genes were found to be differentially expressed between Xizang goats and low-altitude goats, with 127 genes showing up-regulation and 117 genes showing down-regulation. SLC26A9, GPX3, ARRDC4, and COX1 were identified as potential candidates for plateau adaptation in Xizang goats. Moreover, the metabolism of fatty acids, arachidonic acids, pathway involving cytokines and their receptors could be essential for adaptation to plateau hypoxia and cold endurance. The expression of GPX3, a gene linked to plateau acclimatization in Xizang goats, was linked to the abundance of Anaerovibrio, and the expression of SLC26A9 was linked to the quantity of Selenomonas, according to ruminal microbiota and host Spearman correlation analysis. Our findings imply that in order to adapt harsh plateau conditions, Xizang goats have evolved to maximize digestion and absorption as well as to have a rumen microbiota suitable for the composition of their diet.


Assuntos
Cabras , Microbiota , Animais , Cabras/metabolismo , Transcriptoma , Rúmen/metabolismo , Microbiota/genética , Adaptação Psicológica
7.
BMC Plant Biol ; 24(1): 49, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216904

RESUMO

BACKGROUND: Trees have developed a broad spectrum of molecular mechanisms to counteract oxidative stress. Secondary metabolites via phenolic compounds emblematized the hidden bridge among plant kingdom, human health, and oxidative stress. Although studies have demonstrated that abiotic stresses can increase the production of medicinal compounds in plants, research comparing the efficiency of these stresses still needs to be explored. Thus, the present research paper provided an exhaustive comparative metabolomic study in Dalbergia odorifera under salinity (ST) and waterlogging (WL). RESULTS: High ST reduced D. odorifera's fresh biomass compared to WL. While WL only slightly affected leaf and vein size, ST had a significant negative impact. ST also caused more significant damage to water status and leaflet anatomy than WL. As a result, WL-treated seedlings exhibited better photosynthesis and an up-regulation of nonenzymatic pathways involved in scavenging reactive oxygen species. The metabolomic and physiological responses of D. odorifera under WL and salinity ST stress revealed an accumulation of secondary metabolites by the less aggressive stress (WL) to counterbalance the oxidative stress. Under WL, more metabolites were more regulated compared to ST. ST significantly altered the metabolite profile in D. odorifera leaflets, indicating its sensitivity to salinity. WL synthesized more metabolites involved in phenylpropanoid, flavone, flavonol, flavonoid, and isoflavonoid pathways than ST. Moreover, the down-regulation of L-phenylalanine correlated with increased p-coumarate, caffeate, and ferulate associated with better cell homeostasis and leaf anatomical indexes under WL. CONCLUSIONS: From a pharmacological and medicinal perspective, WL improved larger phenolics with therapeutic values compared to ST. Therefore, the data showed evidence of the crucial role of medical tree species' adaptability on ROS detoxification under environmental stresses that led to a significant accumulation of secondary metabolites with therapeutic value.


Assuntos
Dalbergia , Humanos , Dalbergia/metabolismo , Salinidade , Plantas/metabolismo , Antioxidantes/metabolismo , Fotossíntese
8.
BMC Plant Biol ; 24(1): 200, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500068

RESUMO

BACKGROUND: Michelia lacei W.W.Smith (Magnoliaceae), was classified as a Plant Species with Extremely Small Populations (PSESP) by the Yunnan Provincial Government in both action plans of 2012 and 2021. This evergreen tree is known for its high ornamental and scientific value, but it faces significant threats due to its extremely small population size and narrow geographical distribution. The study aims to understand the genetic structure, diversity, and demographic history of this species to inform its conservation strategies. RESULTS: The analysis of transcriptome data from 64 individuals across seven populations of M. lacei identified three distinct genetic clusters and generated 104,616 single-nucleotide polymorphisms (SNPs). The KM ex-situ population, originating from Longling County, exhibited unique genetic features, suggesting limited gene flow. The genetic diversity was substantial, with significant differences between populations, particularly between the KM lineage and the OTHER lineage. Demographic history inferred from the data indicated population experienced three significant population declines during glaciations, followed by periods of recovery. We estimated the effective population size (Ne) of the KM and OTHER lineages 1,000 years ago were 85,851 and 416,622, respectively. Gene flow analysis suggested past gene flow between populations, but the KM ex-situ population showed no recent gene flow. A total of 805 outlier SNPs, associated with four environmental factors, suggest potential local adaptation and showcase the species' adaptive potential. Particularly, the BZ displayed 515 adaptive loci, highlighting its strong potential for adaptation within this group. CONCLUSIONS: The comprehensive genomic analysis of M. lacei provides valuable insights into its genetic background and highlights the urgent need for conservation efforts. The study underscores the importance of ex-situ conservation methods, such as seed collection and vegetative propagation, to safeguard genetic diversity and promote population restoration. The preservation of populations like MC and BZ is crucial for maintaining the species' genetic diversity. In-situ conservation measures, including the establishment of in-situ conservation sites and community engagement, are essential to enhance protection awareness and ensure the long-term survival of this threatened plant species.


Assuntos
Magnolia , Magnoliaceae , Humanos , Animais , Variação Genética , Transcriptoma , China , Espécies em Perigo de Extinção , Magnolia/genética , Magnoliaceae/genética
9.
Small ; 20(3): e2305881, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670528

RESUMO

Core-shell metal-organic frameworks (MOF@MOF) are promising materials with sophisticated structures that cannot only enhance the properties of MOFs but also endow them with new functions. The growth of isotopic lcore-shell MOFs is mostly limited to inconvenient stepwise seeding strategies with strict requirements, and by far one-pot synthesis is still of great challenge due to the interference of different components. Through two pairs of isoreticular MOFs, it reveals that the structural incompatibility is a prerequisite for the formation of MOFs@MOFs by one-pot synthesis, as illustrated by PMOF-3@HHU-9. It further unveils that the adaptability of the shell-MOF is a more key factor for nucleation kinetic control. MOFs with flexible linkers has comparably slower nucleation than MOFs with rigid linkers (forming PMOF-3@NJU-Bai21), and structural-flexible MOFs built by flexible linkers show the lowest nucleation and the most adaptability (affording NJU-Bai21@HHU-9). This degree of adaptability variation controls the sequence and further facilitates the synthesis of a first triple-layered core-shell MOF (PMOF-3@NJU-Bai21@HHU-9) by one-pot synthesis. The insight gained from this study will aid in the rational design and synthesis of other multi-shelled structures by one-pot synthesis and the further expansion of their applications.

10.
Small ; : e2403334, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990887

RESUMO

Textiles with thermal/moisture managing functions are of high interest. However, making the textile sensitive to the surrounding environment is still challenging. Herein, a multimodal smart fabric is developed by stitching together the Ag coated thermal-humidity sensitive thermoplastic polyurethane (Ag-THSPU) and the hybrid of polyvinylidene fluoride and polyurethane (PU-PVDF). The porous PU-PVDF layer is used for solar reflection, infrared emissivity, and water resistance. The Ag-THSPU layer is designed for regulating thermal reflection, sweat evaporation as well as convection. In cold and dry state, the Ag domains are densely packed covering the crystalline polyurethane matrix, featuring low water transmission (102.74 g m-2·24 h-1), high thermal reflection and 2.4 °C warmer than with cotton fabric. In the hot and humid state, the THSPU layer is swollen by sweat and expands in area, resulting in the formation of micro-hook faces where the Ag domains spread apart to promote sweat evaporation (2084.88 g/m-2·24 h-1), thermal radiation and convection, offering 2.5 °C cooler than with cotton fabric. The strategy reported here opens a new door for the development of adaptive textiles in demanding situations.

11.
Small ; : e2401258, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794878

RESUMO

Manganese oxide-based aqueous zinc-ion batteries (ZIBs) are attractive energy storage devices, owing to their good safety, low cost, and ecofriendly features. However, various critical issues, including poor conductivity, sluggish reaction kinetics, and unstable structure still restrict their further development. Oxygen defect engineering is an effective strategy to improve the electrochemical performance of manganese oxides, but challenging in the accurate regulation of oxygen defects. In this work, an effective and controllable defect engineering strategy-controllable electrochemical lithium-ion intercalation - is proposed to tackle this issue. The incorporation of lithium ions and oxygen defects can promote the conductivity, lattice spacing, and structural stability of Mn2O3 (MO), thus improving its capacity (232.7 mAh g-1), rate performance, and long-term cycling stability (99.0% capacity retention after 3000 cycles). Interestingly, the optimal ratio of intercalated lithium-ion varies at different temperature or mass-loading of MO, which provides the possibility to customize diverse ZIBs to meet different application conditions. In addition, the fabricated ZIBs present good flexibility, superior safety, and admirable adaptability under extreme temperatures (-20-100 °C). This work provides an inspiration on the structural customization of metal oxide nanomaterials for diverse ZIBs, and sheds light on the construction of future portable electronics.

12.
Planta ; 259(5): 104, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551672

RESUMO

MAIN CONCLUSION: The post-transcriptional gene regulatory pathway and small RNA pathway play important roles in regulating the rapid and long-term response of Rhododendron moulmainense to high-temperature stress. The Rhododendron plays an important role in maintaining ecological balance. However, it is difficult to domesticate for use in urban ecosystems due to their strict optimum growth temperature condition, and its evolution and adaptation are little known. Here, we combined transcriptome and small RNAome to reveal the rapid response and long-term adaptability regulation strategies in Rhododendron moulmainense under high-temperature stress. The post-transcriptional gene regulatory pathway plays important roles in stress response, in which the protein folding pathway is rapidly induced at 4 h after heat stress, and alternative splicing plays an important role in regulating gene expression at 7 days after heat stress. The chloroplasts oxidative damage is the main factor inhibiting photosynthesis efficiency. Through WGCNA analysis, we identified gene association patterns and potential key regulatory genes responsible for maintaining the ROS steady-state under heat stress. Finally, we found that the sRNA synthesis pathway is induced under heat stress. Combined with small RNAome, we found that more miRNAs are significantly changed under long-term heat stress. Furthermore, MYBs might play a central role in target gene interaction network of differentially expressed miRNAs in R. moulmainense under heat stress. MYBs are closely related to ABA, consistently, ABA synthesis and signaling pathways are significantly inhibited, and the change in stomatal aperture is not obvious under heat stress. Taken together, we gained valuable insights into the transplantation and long-term conservation domestication of Rhododendron, and provide genetic resources for genetic modification and molecular breeding to improve heat resistance in Rhododendron.


Assuntos
MicroRNAs , Rhododendron , Transcriptoma/genética , Rhododendron/genética , Rhododendron/metabolismo , Ecossistema , Resposta ao Choque Térmico/genética , MicroRNAs/genética , Perfilação da Expressão Gênica
13.
Appl Environ Microbiol ; : e0056924, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916292

RESUMO

Microbial community adaptability to pH stress plays a crucial role in biofilm formation. This study aims to investigate the regulatory mechanisms of exogenous putrescine on pH stress, as well as enhance understanding and application for the technical measures and molecular mechanisms of biofilm regulation. Findings demonstrated that exogenous putrescine acted as a switch-like distributor affecting microorganism pH stress, thus promoting biofilm formation under acid conditions while inhibiting it under alkaline conditions. As pH decreases, the protonation degree of putrescine increases, making putrescine more readily adsorbed. Protonated exogenous putrescine could increase cell membrane permeability, facilitating its entry into the cell. Subsequently, putrescine consumed intracellular H+ by enhancing the glutamate-based acid resistance strategy and the γ-aminobutyric acid metabolic pathway to reduce acid stress on cells. Furthermore, putrescine stimulated ATPase expression, allowing for better utilization of energy in H+ transmembrane transport and enhancing oxidative phosphorylation activity. However, putrescine protonation was limited under alkaline conditions, and the intracellular H+ consumption further exacerbated alkali stress and inhibits cellular metabolic activity. Exogenous putrescine promoted the proportion of fungi and acidophilic bacteria under acidic stress and alkaliphilic bacteria under alkali stress while having a limited impact on fungi in alkaline biofilms. Increasing Bdellovibrio under alkali conditions with putrescine further aggravated the biofilm decomposition. This research shed light on the unclear relationship between exogenous putrescine, environmental pH, and pH stress adaptability of biofilm. By judiciously employing putrescine, biofilm formation could be controlled to meet the needs of engineering applications with different characteristics.IMPORTANCEThe objective of this study is to unravel the regulatory mechanism by which exogenous putrescine influences biofilm pH stress adaptability and understand the role of environmental pH in this intricate process. Our findings revealed that exogenous putrescine functioned as a switch-like distributor affecting the pH stress adaptability of biofilm-based activated sludge, which promoted energy utilization for growth and reproduction processes under acidic conditions while limiting biofilm development to conserve energy under alkaline conditions. This study not only clarified the previously ambiguous relationship between exogenous putrescine, environmental pH, and biofilm pH stress adaptability but also offered fresh insights into enhancing biofilm stability within extreme environments. Through the modulation of energy utilization, exerting control over biofilm growth and achieving more effective engineering goals could be possible.

14.
J Med Virol ; 96(6): e29753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895800

RESUMO

Human papillomavirus (HPV) type 81 has recently become one of the most common low-risk HPV types; however, literature focusing on it is limited. This study aimed to analyze the reasons for the increased detection rate of HPV81 and investigate its evolving pathogenicity. We analyzed the detection rates and trends of HPV81 in 229 061 exfoliated cervical cell samples collected from 2014 to 2023; collected samples of HPV81 single infections from two different time periods; and analyzed the allele frequencies, positive selection, viral load, persistent infection capacity, and pathogenicity of E6 and E7 genotypes. We found that the detection rate of HPV81 ranked first among the low-risk types in exfoliated cervical cells and exhibited a significantly increasing trend (p < 0.001). The frequency of the E6 prototype allele of HPV81 (n = 317) was significantly increased (p = 0.018) and demonstrated the strongest adaptive capacity. The viral load and persistent infection capacity of the E6 prototype were significantly higher than those of the mutants, thus serving as key drivers for increasing the detection rate of HPV81 and enhancing its pathogenicity. The viral load was positively correlated with persistent infection capacity and pathogenicity. Persistent infection was a crucial factor in the pathogenicity of HPV81. Successful adaptive evolution of HPV81 is accompanied by enhanced pathogenicity.


Assuntos
Genótipo , Infecções por Papillomavirus , Infecção Persistente , Polimorfismo Genético , Carga Viral , Humanos , Infecções por Papillomavirus/virologia , Feminino , Infecção Persistente/virologia , Colo do Útero/virologia , Colo do Útero/patologia , Adulto , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , Frequência do Gene , Proteínas Oncogênicas Virais/genética , Virulência/genética , Alphapapillomavirus/genética , Alphapapillomavirus/patogenicidade , Alphapapillomavirus/classificação , Alphapapillomavirus/isolamento & purificação , Papillomavirus Humano
15.
Plant Cell Environ ; 47(1): 246-258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37830787

RESUMO

Plants can sense the photoperiod to flower at the right time. As a sensitive short-day crop, soybean (Glycine max) flowering varies greatly depending on photoperiods, affecting yields. Adaptive changes in soybeans rely on variable genetic loci such as E1 and FLOWERING LOCUS T orthologs. However, the precise coordination and control of these molecular components remain largely unknown. In this study, we demonstrate that GmFT5b functions as a crucial factor for soybean flowering. Overexpressed or mutated GmFT5b resulted in significantly early or later flowering, altering expression profiles for several downstream flowering-related genes under a long-day photoperiod. GmFT5b interacts with the transcription factor GmFDL15, suggesting transcriptional tuning of flowering time regulatory genes via the GmFT5b/GmFDL15 complex. Notably, GmFT5a partially compensated for GmFT5b function, as ft5a ft5b double mutants exhibited an enhanced late-flowering phenotype. Association mapping revealed that GmFT5b was associated with flowering time, maturity, and geographical distribution of soybean accessions, all associated with the E1 locus. Therefore, GmFT5b is a valuable target for enhancing regional adaptability. Natural variants or multiple mutants in this region can be utilized to generate optimized soybean varieties with precise flowering times.


Assuntos
Glycine max , Fotoperíodo , Glycine max/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Loci Gênicos , Flores/fisiologia , Regulação da Expressão Gênica de Plantas
16.
Insect Mol Biol ; 33(4): 387-404, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38488345

RESUMO

The fluctuation in temperature poses a significant challenge for poikilothermic organisms, notably insects, particularly in the context of changing climatic conditions. In insects, temperature adaptation has been driven by polygenes. In addition to genes that directly affect traits (core genes), other genes (peripheral genes) may also play a role in insect temperature adaptation. This study focuses on two peripheral genes, the GRIP and coiled-coil domain containing 2 (GCC2) and karyopherin subunit beta 1 (KPNB1). These genes are differentially expressed at different temperatures in the cosmopolitan pest, Plutella xylostella. GCC2 and KPNB1 in P. xylostella were cloned, and their relative expression patterns were identified. Reduced capacity for thermal adaptation (development, reproduction and response to temperature extremes) in the GCC2-deficient and KPNB1-deficient P. xylostella strains, which were constructed by CRISPR/Cas9 technique. Deletion of the PxGCC2 or PxKPNB1 genes in P. xylostella also had a differential effect on gene expression for many traits including stress resistance, resistance to pesticides, involved in immunity, trehalose metabolism, fatty acid metabolism and so forth. The ability of the moth to adapt to temperature via different pathways is likely to be key to its ability to remain an important pest species under predicted climate change conditions.


Assuntos
Mariposas , Animais , Mariposas/genética , Mariposas/fisiologia , Mariposas/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Herança Multifatorial , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Aclimatação/genética , Temperatura , Feminino
17.
BMC Cancer ; 24(1): 581, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741043

RESUMO

OBJECTIVES: To explore the effects of a 'Rebuilding Myself' intervention on enhancing the adaptability of cancer patients to return to work. METHODS: A single-center, single-blind, randomized controlled trial design was used. Eligible patients who were receiving routine hospital treatment were recruited from the university-affiliated hospital in our city. Patients in the control group only received usual care, while patients in the intervention group received additional 'Rebuilding Myself' intervention. Adaptability to return to work, self-efficacy of returning to work, mental resilience, quality of life and work ability were measured at baseline, the 6th and 12th of the intervention. The general estimation equations were used to compare the overall changes of each outcome index between the two groups at different time points. Considering that there may be patient shedding and rejection, Per-Protocol and Intention-to-Treat analysis were used to analyze the data in this study. RESULTS: There were statistically significant differences between the two groups of patients in the cancer patients' adaptability to return to work, self-efficacy to return to work, mental resilience, work abilities, the physical, emotional, cognitive function, fatigue, insomnia and overall health status dimensions of quality of life (P < 0.05). And no significant difference was found in other dimensions (P > 0.05). The group effect, time effect, and interaction effect of patients' return to work adaptability and return to work self-efficacy were statistically significant in both groups (P < 0.05). Mental resilience, working ability, and quality of life had obvious time effect and interaction effect (P < 0.05). CONCLUSION: This intervention could improve cancer patients' adaptability to return to work, self-efficacy to return to work, mental resilience, work abilities and quality of life. And it can be further expanded to improve the adaptability of patients to return to work, then to help patients achieve comprehensive rehabilitation. IMPLICATIONS FOR CANCER SURVIVORS: The application of 'Rebuilding Myself' interventions can effectively improve the adaptability of cancer patients returning to work. TRIAL REGISTRATION: This study was registered at the Chinese Clinical Trial Registry (Registration number: ChiCTR2200057943) on 23 March, 2022.


Assuntos
Adaptação Psicológica , Neoplasias , Qualidade de Vida , Resiliência Psicológica , Retorno ao Trabalho , Autoeficácia , Humanos , Masculino , Feminino , Neoplasias/reabilitação , Neoplasias/psicologia , Adulto , Pessoa de Meia-Idade , Retorno ao Trabalho/psicologia , Retorno ao Trabalho/estatística & dados numéricos , Método Simples-Cego
18.
Vet Res ; 55(1): 85, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970094

RESUMO

Phage therapy holds promise as an alternative to antibiotics for combating multidrug-resistant bacteria. However, host bacteria can quickly produce progeny that are resistant to phage infection. In this study, we investigated the mechanisms of bacterial resistance to phage infection. We found that Rsm1, a mutant strain of Salmonella enteritidis (S. enteritidis) sm140, exhibited resistance to phage Psm140, which was originally capable of lysing its host at sm140. Whole genome sequencing analysis revealed a single nucleotide mutation at position 520 (C → T) in the rfbD gene of Rsm1, resulting in broken lipopolysaccharides (LPS), which is caused by the replacement of CAG coding glutamine with a stop codon TAG. The knockout of rfbD in the sm140ΔrfbD strain caused a subsequent loss of sensitivity toward phages. Furthermore, the reintroduction of rfbD in Rsm1 restored phage sensitivity. Moreover, polymerase chain reaction (PCR) amplification of rfbD in 25 resistant strains revealed a high percentage mutation rate of 64% within the rfbD locus. We assessed the fitness of four bacteria strains and found that the acquisition of phage resistance resulted in slower bacterial growth, faster sedimentation velocity, and increased environmental sensitivity (pH, temperature, and antibiotic sensitivity). In short, bacteria mutants lose some of their abilities while gaining resistance to phage infection, which may be a general survival strategy of bacteria against phages. This study is the first to report phage resistance caused by rfbD mutation, providing a new perspective for the research on phage therapy and drug-resistant mechanisms.


Assuntos
Mutação Puntual , Fagos de Salmonella , Salmonella enteritidis , Salmonella enteritidis/virologia , Salmonella enteritidis/fisiologia , Salmonella enteritidis/genética , Fagos de Salmonella/fisiologia , Fagos de Salmonella/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
19.
Ecol Appl ; 34(1): e2887, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37210676

RESUMO

The invasive freshwater mussel Limnoperna fortunei (Dunker, 1857) has spread widely throughout Asia and South America, especially via interbasin water diversion and navigation. The middle route of the South-to-North Water Transfer Project (SNWTP), whose terminal is Beijing, has diverted more than 60 billion m3 of water from the Yangtze River Basin to Northern China since December 2014. L. fortunei has spread north to Beijing along the SNWTP, biofouling its channels and tunnels. To determine the status of L. fortunei's invasion in Beijing, we systematically inspected the water bodies receiving southern water, including all branches of the SNWTP, water treatment plants, lakes, reservoirs, and rivers. We measured the densities of adults and veligers of L. fortunei and conducted eDNA analyses of water samples. A generalized linear model and canonical correspondence analysis were adopted to investigate the correlations between environmental (e.g., water temperature, conductivity, pH, total nitrogen, and phosphorus) and biological (e.g., chlorophyll a, plankton density, and community composition) variables and the densities of adults and veligers of L. fortunei. Water temperature is the most important factor in determining the densities of D-shaped and pediveliger veligers, with explanatory variable contributions of 56.2% and 43.9%, respectively. The pH affects the densities of D-shaped, umbonated, and pediveliger veligers. The density of plantigrade veligers is negatively correlated with the conductivity and positively correlated with the concentration of chlorophyll a. Canonical correspondence analysis shows a weak correlation between the dominant phytoplankton taxa and the density of veligers. The densities of D-shaped, umbonated, and pediveliger veligers are positively correlated with the density of small phytoplankton (12.54 ± 4.33 µm), and the density of plantigrade veligers is positively correlated with the density of large (16.12 ± 5.96 µm) phytoplankton. The density of planktonic veligers is well correlated with local abiotic variables, and that of plantigrade veligers is less correlated with local abiotic variables. This finding implies that controlling early-stage veligers by altering water temperature, pH, and food size might effectively control the establishment of further L. fortunei colonies.


Assuntos
Mytilidae , Animais , Pequim , Clorofila A , Fitoplâncton , China , Lagos
20.
Wound Repair Regen ; 32(4): 393-406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494792

RESUMO

Skin injuries can have unexpected surfaces, leading to uneven wound surfaces and inadequate dressing contact with these irregular surfaces. This can decrease the dressing's haemostatic action and increase the healing period. This study recommends the use of sticky and flexible cryogel coverings to promote faster haemostasis and efficiently handle uneven skin wounds. Alginate cryogels have a fast haemostatic effect and shape flexibility due to their macroporous structure. The material demonstrates potent antibacterial characteristics and enhances skin adherence by adding grafted chitosan with gallic acid. In irregular defect wound models, cryogels can cling closely to uneven damage surfaces due to their amorphous nature. Furthermore, their macroporous structure allows for quick haemostasis by quickly absorbing blood and wound exudate. After giving the dressing a thorough rinse, its adhesive strength reduces and it is simple to remove without causing any damage to the wound. Cryogel demonstrated faster haemostasis than gauze in a wound model on a rat tail, indicating that it has considerable potential for use as a wound dressing in the biomedical area.


Assuntos
Bandagens , Criogéis , Hemostasia , Cicatrização , Criogéis/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Ratos , Hemostasia/efeitos dos fármacos , Polissacarídeos/farmacologia , Quitosana/farmacologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Alginatos/farmacologia , Masculino , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/terapia , Hemostáticos/farmacologia , Pele/lesões
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa