RESUMO
Atrial fibrillation (AF) is a common arrhythmia, and out-of-hospital, wearable, long-term electrocardiogram (ECG) monitoring can help with the early detection of AF. The presence of a motion artifact (MA) in ECG can significantly affect the characteristics of the ECG signal and hinder early detection of AF. Studies have shown that (a) using reference signals with a strong correlation with MAs in adaptive filtering (ADF) can eliminate MAs from the ECG, and (b) artificial intelligence (AI) algorithms can recognize AF when there is no presence of MAs. However, no literature has been reported on whether ADF can improve the accuracy of AI for recognizing AF in the presence of MAs. Therefore, this paper investigates the accuracy of AI recognition for AF when ECGs are artificially introduced with MAs and processed by ADF. In this study, 13 types of MA signals with different signal-to-noise ratios ranging from +8 dB to -16 dB were artificially added to the AF ECG dataset. Firstly, the accuracy of AF recognition using AI was obtained for a signal with MAs. Secondly, after removing the MAs by ADF, the signal was further identified using AI to obtain the accuracy of the AF recognition. We found that after undergoing ADF, the accuracy of AI recognition for AF improved under all MA intensities, with a maximum improvement of 60%.
Assuntos
Algoritmos , Artefatos , Inteligência Artificial , Fibrilação Atrial , Eletrocardiografia , Processamento de Sinais Assistido por Computador , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Eletrocardiografia/métodos , Humanos , Razão Sinal-RuídoRESUMO
Simultaneous transmit and receive wireless communications have been highlighted for their potential to double the spectral efficiency. However, it is necessary to mitigate self-interference (SI). Considering both the SI channel and remote transmission (RT) channel need to be estimated before equalizing the received signal, we propose two adaptive algorithms for linear and nonlinear self-interference cancellation (SIC), based on a multi-layered joint channel estimator structure. The proposed algorithms estimate the RT channel while performing SIC, and the multi-layered structure ensures improved performance across various interference-to-signal ratios. The M-estimate function enhances the robustness of the algorithm, allowing it to converge even when affected by impulsive noise. For nonlinear SIC, this paper introduces an adaptive algorithm based on generalized Hammerstein polynomial basis functions. The simulation results indicate that this approach achieves a better convergence speed and normalized mean squared difference compared to existing SIC methods, leading to a lower system bit error rate.
RESUMO
Utilizing reliable and accurate positioning and navigation systems is crucial for saving the lives of rescue personnel and accelerating rescue operations. However, Global Navigation Satellite Systems (GNSSs), such as GPS, may not provide stable signals in dense forests. Therefore, integrating multiple sensors like GPS and Inertial Measurement Units (IMUs) becomes essential to enhance the availability and accuracy of positioning systems. To accurately estimate rescuers' positions, this paper employs the Adaptive Unscented Kalman Filter (AUKF) algorithm with measurement noise variance matrix adaptation, integrating IMU and GPS data alongside barometric altitude measurements for precise three-dimensional positioning in complex environments. The AUKF enhances estimation robustness through the adaptive adjustment of the measurement noise variance matrix, particularly excelling when GPS signals are interrupted. This study conducted tests on two-dimensional and three-dimensional road scenarios in forest environments, confirming that the AUKF-algorithm-based integrated navigation system outperforms the traditional Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Adaptive Extended Kalman Filter (AEKF) in emergency rescue applications. The tests further evaluated the system's navigation performance on rugged roads and during GPS signal interruptions. The results demonstrate that the system achieves higher positioning accuracy on rugged forest roads, notably reducing errors by 18.32% in the north direction, 8.51% in the up direction, and 3.85% in the east direction compared to the EKF. Furthermore, the system exhibits good adaptability during GPS signal interruptions, ensuring continuous and accurate personnel positioning during rescue operations.
RESUMO
Combined SINS/GPS navigation systems have been widely used. However, when the traditional combined SINS/GPS navigation system travels between tall buildings, in the shade of trees, or through tunnels, the GPS encounters frequent signal blocking, which leads to the interruption of GPS signals, and as a result, the combined SINS/GPS-based navigation method degenerates into a pure inertial guidance system, which will lead to the accumulation of navigation errors. In this paper, an adaptive Kalman filtering algorithm based on polynomial fitting and a Taylor expansion is proposed. Through the navigation information output from the inertial guidance system, the polynomial interpolation method is used to construct the velocity equation and position equation of the carrier, and then the Taylor expansion is used to construct the virtual measurement at the moment of the GPS signal interruption, which can make up for the impact of the lack of measurement information on the combined SINS/GPS navigation system when the GPS signal is interrupted. The results of computer simulation experiments and road measurement tests based on the loosely combined SINS/GPS navigation system show that when the carrier faces a GPS signal interruption situation, compared with a combined SINS/GPS navigation algorithm that does not take any rescue measures, our proposed combined SINS/GPS navigation algorithm possesses a higher accuracy in the attitude angle estimation, a higher accuracy in the velocity estimation, and a higher accuracy in the positional localization, and the system possesses higher stability.
RESUMO
Adaptive filtering methods based on least-mean-square (LMS) error criterion have been commonly used in auscultation to reduce ambient noise. For non-Gaussian signals containing pulse components, such methods are prone to weights misalignment. Unlike the commonly used variable step-size methods, this paper introduced linear preprocessing to address this issue. The role of linear preprocessing in improving the denoising performance of the normalized least-mean-square (NLMS) adaptive filtering algorithm was analyzed. It was shown that, the steady-state mean square weight deviation of the NLMS adaptive filter was proportional to the variance of the body sounds and inversely proportional to the variance of the ambient noise signals in the secondary channel. Preprocessing with properly set parameters could suppress the spikes of body sounds, and decrease the variance and the power spectral density of the body sounds, without significantly reducing or even with increasing the variance and the power spectral density of the ambient noise signals in the secondary channel. As a result, the preprocessing could reduce weights misalignment, and correspondingly, significantly improve the performance of ambient-noise reduction. Finally, a case of heart-sound auscultation was given to demonstrate how to design the preprocessing and how the preprocessing improved the ambient-noise reduction performance. The results can guide the design of adaptive denoising algorithms for body sound auscultation.
Assuntos
Algoritmos , Auscultação , Ruído , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Humanos , Ruído/prevenção & controle , Auscultação/métodos , Análise dos Mínimos QuadradosRESUMO
Partial discharge (PD) is the primary factor causing insulation degradation in transformers. However, the collected signals of partial discharge are often contaminated with significant noise. This makes it difficult to extract the PD signal and hinders subsequent signal analysis and processing. This paper proposes a denoising method for transformer partial discharge based on the Whale VMD algorithm combined with adaptive filtering and wavelet thresholding (WVNW). First, the WOA is used to optimize the important parameters of the VMD. The selected mode components from the VMD decomposition are then subjected to preliminary denoising based on the kurtosis criterion. The reconstructed signal is further denoised using the Adaptive Filter (NLMS) algorithm to remove narrowband interference noise. Finally, the residual white noise is eliminated using the Wavelet Thresholding algorithm. In simulation experiments and practical measurements, the proposed method is compared quantitatively with previous methods, VMD-WT, and EMD-WT, based on metrics such as SNR, RMSE, NCC, and NRR. The results indicate that the WVNW method effectively suppresses noise interference and restores the original PD signal waveform with high waveform similarity while preserving a significant amount of local discharge signal features.
RESUMO
Aiming at the problems of Non-Line-of-Sight (NLOS) observation errors and inaccurate kinematic model in ultra-wideband (UWB) systems, this paper proposed an improved robust adaptive cubature Kalman filter (IRACKF). Robust and adaptive filtering can weaken the influence of observed outliers and kinematic model errors on filtering, respectively. However, their application conditions are different, and improper use may reduce positioning accuracy. Therefore, this paper designed a sliding window recognition scheme based on polynomial fitting, which can process the observation data in real-time to identify error types. Simulation and experimental results indicate that compared to the robust CKF, adaptive CKF, and robust adaptive CKF, the IRACKF algorithm reduces the position error by 38.0%, 45.1%, and 25.3%, respectively. The proposed IRACKF algorithm significantly improves the positioning accuracy and stability of the UWB system.
RESUMO
Adaptive equalization is crucial in mitigating distortions and compensating for frequency response variations in communication systems. It aims to enhance signal quality by adjusting the characteristics of the received signal. Particle swarm optimization (PSO) algorithms have shown promise in optimizing the tap weights of the equalizer. However, there is a need to enhance the optimization capabilities of PSO further to improve the equalization performance. This paper provides a comprehensive study of the issues and challenges of adaptive filtering by comparing different variants of PSO and analyzing the performance by combining PSO with other optimization algorithms to achieve better convergence, accuracy, and adaptability. Traditional PSO algorithms often suffer from high computational complexity and slow convergence rates, limiting their effectiveness in solving complex optimization problems. To address these limitations, this paper proposes a set of techniques aimed at reducing the complexity and accelerating the convergence of PSO.
RESUMO
Compared to wide-field telescopes, small-field detection systems have higher spatial resolution, resulting in stronger detection capabilities and higher positioning accuracy. When detecting by small fields in synchronous orbit, both space debris and fixed stars are imaged as point targets, making it difficult to distinguish them. In addition, with the improvement in detection capabilities, the number of stars in the background rapidly increases, which puts higher requirements on recognition algorithms. Therefore, star detection is indispensable for identifying and locating space debris in complex backgrounds. To address these difficulties, this paper proposes a real-time star extraction method based on adaptive filtering and multi-frame projection. We use bad point repair and background suppression algorithms to preprocess star images. Afterwards, we analyze and enhance the target signal-to-noise ratio (SNR). Then, we use multi-frame projection to fuse information. Subsequently, adaptive filtering, adaptive morphology, and adaptive median filtering algorithms are proposed to detect trajectories. Finally, the projection is released to locate the target. Our recognition algorithm has been verified by real star images, and the images were captured using small-field telescopes. The experimental results demonstrate the effectiveness of the algorithm proposed in this paper. We successfully extracted hip-27066 star, which has a magnitude of about 12 and an SNR of about 1.5. Compared with existing methods, our algorithm has advantages in both recognition rate and false-alarm rate, and can be used as a real-time target recognition algorithm for space-based synchronous orbit detection payloads.
RESUMO
Fetal ECG monitoring is a routine clinical detection method that can reflect the changes of fetal heart in utero in real time. At present, most of the clinical fetal heart rate detection adopts the ultrasonic Doppler method, which is technically difficult and highly specialized in operation and expensive. This study introduces a fetal ECG detection system based on the maternal abdominal electrode method. The weak fetal ECG changes are sensed through the maternal abdominal electrode, and the mixed ECG signal is obtained through the corresponding amplification and filtering circuit. Finally, the obtained signal is passed through WiFi, transmitted to the host computer. The host computer uses the adaptive filtering algorithm to estimate the fetal ECG signal. The system has strong feasibility, low operation expertise, low cost, and is more convenient.
RESUMO
Noise is a common problem in wearable electrocardiogram (ECG) monitoring systems because the presence of noise can corrupt the ECG waveform causing inaccurate signal interpretation. By comparison with electromagnetic interference and its minimization, the reduction of motion artifact is more difficult and challenging because its time-frequency characteristics are unpredictable. Based on the characteristics of motion artifacts, this work uses adaptive filtering, a specially designed ECG device, and an Impedance Pneumography (IP) data acquisition system to combat motion artifacts. The newly designed ECG-IP acquisition system maximizes signal correlation by measuring both ECG and IP signals simultaneously using the same pair of electrodes. Signal comparison investigations between ECG and IP signals under five different body motions were carried out, and the Pearson Correlation Coefficient |r| was higher than 0.6 in all cases, indicating a good correlation. To optimize the performance of adaptive motion artifact reduction, the IP signal was filtered to a 5 Hz low-pass filter and then fed into a Recursive Least Squares (RLS) adaptive filter as a reference input signal. The performance of the proposed motion artifact reduction method was evaluated subjectively and objectively, and the results proved that the method could suppress the motion artifacts and achieve minimal distortion to the denoised ECG signal.
Assuntos
Artefatos , Dispositivos Eletrônicos Vestíveis , Algoritmos , Impedância Elétrica , Eletrocardiografia/métodos , Movimento (Física) , Processamento de Sinais Assistido por ComputadorRESUMO
We propose a communication-navigation integrated signal (CPIS), which is superimposed on the communication signal with power that does not affect the communication service, and realizes high-precision indoor positioning in a mobile communication network. Due to the occlusion of indoor obstacles and the power limitation of the positioning signal, existing carrier loop algorithms have large tracking errors in weak signal environments, which limits the positioning performance of the receiver in a complex environment. The carrier loop based on Kalman filtering (KF) has a good performance in respect of weak signals. However, the carrier frequency error of acquisition under weak signals is large, and the KF loop cannot converge quickly. Moreover, the KF algorithm based on fixed noise covariance increases or diverges in filtering error in complex environments. In this paper, a coarse-to-fine weighted adaptive Kalman filter (WAKF)-based carrier loop algorithm is proposed to solve the above problems of the receiver. In the coarse tracking stage, acquisition error reduction and bit synchronization are realized, and then a carrier loop based on Sage-Husa adaptive filtering is entered. Considering the shortcomings of the filter divergence caused by the negative covariance matrix of Sage-Husa in the filter update process, the weighted factor is given and UD decomposition is introduced to suppress the filtering divergence and improve the filtering accuracy. The simulation and actual environment test results show that the tracking sensitivity of the proposed algorithm is better than that based on the Sage-Husa adaptive filtering algorithm. In addition, compared with the weighted Sage-Husa AKF algorithm, the coarse-to-fine WAKF-based carrier loop algorithm converges faster.
RESUMO
For system identification under impulsive-noise environments, the gradient-based generalized maximum correntropy criterion (GB-GMCC) algorithm can achieve a desirable filtering performance. However, the gradient method only uses the information of the first-order derivative, and the corresponding stagnation point of the method can be a maximum point, a minimum point or a saddle point, and thus the gradient method may not always be a good selection. Furthermore, GB-GMCC merely uses the current input signal to update the weight vector; facing the highly correlated input signal, the convergence rate of GB-GMCC will be dramatically damaged. To overcome these problems, based on the Newton recursion method and the data-reusing method, this paper proposes a robust adaptive filtering algorithm, which is called the Newton recursion-based data-reusing GMCC (NR-DR-GMCC). On the one hand, based on the Newton recursion method, NR-DR-GMCC can use the information of the second-order derivative to update the weight vector. On the other hand, by using the data-reusing method, our proposal uses the information of the latest M input vectors to improve the convergence performance of GB-GMCC. In addition, to further enhance the filtering performance of NR-DR-GMCC, a random strategy can be used to extract more information from the past M input vectors, and thus we obtain an enhanced NR-DR-GMCC algorithm, which is called the Newton recursion-based random data-reusing GMCC (NR-RDR-GMCC) algorithm. Compared with existing algorithms, simulation results under system identification and acoustic echo cancellation are conducted and validate that NR-RDR-GMCC can provide a better filtering performance in terms of filtering accuracy and convergence rate.
RESUMO
Recent work indicates that there are distinct response habituation mechanisms that can be recruited by different stimulation rates and that can underlie different components (e.g., the duration or speed) of a single behavioral response. These findings raise the question: why is "the simplest form of learning" so complicated mechanistically? Beyond evolutionary selection for robustness of plasticity in learning to ignore, it is proposed in this article that multiple mechanisms of habituation have evolved to streamline shifts in ongoing behavioral strategy. Then, speculations are offered regarding the implications of this reconceptualization of habituation for approaching the analysis of mechanisms of more complex forms of learning and memory.
Assuntos
Caenorhabditis elegans/fisiologia , Habituação Psicofisiológica , Nociceptividade/fisiologia , Adaptação Biológica , Animais , Comportamento , Comportamento Animal/fisiologia , Humanos , Transtornos Mentais/psicologia , Peixe-Zebra/fisiologiaRESUMO
Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.
Assuntos
Córtex Auditivo/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Modelos Neurológicos , Rede Nervosa/fisiologia , Animais , Córtex Auditivo/diagnóstico por imagem , Camundongos , Rede Nervosa/diagnóstico por imagemRESUMO
Outdoor vision sensing systems often struggle with poor weather conditions, such as snow and rain, which poses a great challenge to existing video desnowing and deraining methods. In this paper, we propose a novel video desnowing and deraining model that utilizes the salience information of moving objects to address this problem. First, we remove the snow and rain from the video by low-rank tensor decomposition, which makes full use of the spatial location information and the correlation between the three channels of the color video. Second, because existing algorithms often regard sparse snowflakes and rain streaks as moving objects, this paper injects salience information into moving object detection, which reduces the false alarms and missed alarms of moving objects. At the same time, feature point matching is used to mine the redundant information of moving objects in continuous frames, and a dual adaptive minimum filtering algorithm in the spatiotemporal domain is proposed by us to remove snow and rain in front of moving objects. Both qualitative and quantitative experimental results show that the proposed algorithm is more competitive than other state-of-the-art snow and rain removal methods.
RESUMO
An accurate and reliable positioning system (PS) is a significant topic of research due to its broad range of aerospace applications, such as the localization of autonomous agents in GPS-denied and indoor environments. The PS discussed in this work uses ultra-wide band (UWB) sensors to provide distance measurements. UWB sensors are based on radio frequency technology and offer low power consumption, wide bandwidth, and precise ranging in the presence of nominal environmental noise. However, in practical situations, UWB sensors experience varying measurement noise due to unexpected obstacles in the environment. The localization accuracy is highly dependent on the filtering of such noise, and the extended Kalman filter (EKF) is one of the widely used techniques. In varying noise situations, where the obstacles generate larger measurement noise than nominal levels, EKF cannot offer precise results. Therefore, this work proposes two approaches based on EKF: sequential adaptive EKF and piecewise adaptive EKF. Simulation studies are conducted in static, linear, and nonlinear scenarios, and it is observed that higher accuracy is achieved by applying the proposed approaches as compared to the traditional EKF method.
RESUMO
The small-angle optical particle counter (OPC) can detect particles with strong light absorption. At the same time, it can ignore the properties of the detected particles and detect the particle size singly and more accurately. Reasonably improving the resolution of the low pulse signal of fine particles is key to improving the detection accuracy of the small-angle OPC. In this paper, a new adaptive filtering method for the small-angle scattering signals of particles is proposed based on the recursive least squares (RLS) algorithm. By analyzing the characteristics of the small-angle scattering signals, a variable forgetting factor (VFF) strategy is introduced to optimize the forgetting factor in the traditional RLS algorithm. It can distinguish the scattering signal from the stray light signal and dynamically adapt to the change in pulse amplitude according to different light absorptions and different particle sizes. To verify the filtering effect, small-angle scattering pulse extraction experiments were carried out in a simulated smoke box with different particle properties. The experiments show that the proposed VFF-RLS algorithm can effectively suppress system stray light and background noise. When the particle detection signal appears, the algorithm has fast convergence and tracking speed and highlights the particle pulse signal well. Compared with that of the traditional scattering pulse extraction method, the resolution of the processed scattering pulse signal of particles is greatly improved, and the extraction of weak particle scattering pulses at a small angle has a greater advantage. Finally, the effect of filter order in the algorithm on the results of extracting scattering pulses is discussed.
Assuntos
Algoritmos , Análise dos Mínimos Quadrados , Tamanho da PartículaRESUMO
BACKGROUND: Accurate forecasting of medical service demand is beneficial for the reasonable healthcare resource planning and allocation. The daily outpatient volume is characterized by randomness, periodicity and trend, and the time series methods, like ARIMA are often used for short-term outpatient visits forecasting. Therefore, to further enlarge the prediction horizon and improve the prediction accuracy, a hybrid prediction model integrating ARIMA and self-adaptive filtering method is proposed. METHODS: The ARIMA model is first used to identify the features like cyclicity and trend of the time series data and to estimate the model parameters. The parameters are then adjusted by the steepest descent algorithm in the adaptive filtering method to reduce the prediction error. The hybrid model is validated and compared with traditional ARIMA by several test sets from the Time Series Data Library (TSDL), a weekly emergency department (ED) visit case from literature study, and the real cases of prenatal examinations and B-ultrasounds in a maternal and child health care center (MCHCC) in Ningbo. RESULTS: For TSDL cases the prediction accuracy of the hybrid prediction is improved by 80-99% compared with the ARIMA model. For the weekly ED visit case, the forecasting results of the hybrid model are better than those of both traditional ARIMA and ANN model, and similar to the ANN combined data decomposition model mentioned in the literature. For the actual data of MCHCC in Ningbo, the MAPE predicted by the ARIMA model in the two departments was 18.53 and 27.69%, respectively, and the hybrid models were 2.79 and 1.25%, respectively. CONCLUSIONS: The hybrid prediction model outperforms the traditional ARIMA model in both accurate predicting result with smaller average relative error and the applicability for short-term and medium-term prediction.
Assuntos
Algoritmos , Modelos Estatísticos , Criança , China , Serviço Hospitalar de Emergência , Previsões , HumanosRESUMO
This study aimed at the shortcomings of existing fixation algorithms that are image-based only, and an effective tea fixation state monitoring algorithm was proposed. An adaptive filtering algorithm was used to automatically filter the ineffective information. Using the energy extractor, the complete energy information of each fixation image was extracted. The image energy attention mechanism was used to identify the prominent features, and based on these, the energy data was mapped to generate the data points as the training data. The cluster idea was adopted, and the training data feed the features trainer. The trend center data of the tea processing energy clustering was generated from different color channels. The corresponding decision function was designed which is based on the distance of the cluster center. The fixation degree of each monitoring image set was measured by the decision function. The Euclidean distance of the energy clustering center of the three channels with the same fixation time progressively approached. The triangle formed by these three points had a trend of gradually shrinking, which was first discovered by us. The detection results showed high accuracy compared with the common classification algorithms. It indicates that the algorithm proposed has positive guiding and reference significance.