Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 233(3): 1812-1822, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28464239

RESUMO

Bone morphogenetic protein (BMP) 10, a cardiac-restricted BMP family member, is essential in cardiomyogenesis, especially during trabeculation. Crossveinless-2 (CV2, also known as BMP endothelial cell precursor derived regulator [BMPER]) is a BMP-binding protein that modulates the activity of several BMPs. The objective of this study was to examine the combined effects of BMP10 and CV2 on cardiomyocyte differentiation using mouse dedifferentiated fat (mDFAT) cells, which spontaneously differentiate into cardiomyocyte-like cells, as a model. Our results revealed that CV2 binds directly to BMP10, as determined by co-immunoprecipitation, and inhibits BMP10 from initiating SMAD signaling, as determined by luciferase reporter gene assays. BMP10 treatment induced mDFAT cell proliferation, whereas CV2 modulated the BMP10-induced proliferation. Differentiation of cardiomyocyte-like cells proceeded in a reproducible fashion in mDFAT cells, starting with small round Nkx2.5-positive progenitor cells that progressively formed myotubes of increasing length that assembled into beating colonies and stained strongly for Troponin I and sarcomeric alpha-actinin. BMP10 enhanced proliferation of the small progenitor cells, thereby securing sufficient numbers to support formation of myotubes. CV2, on the other hand, enhanced formation and maturation of large myotubes and myotube-colonies and was expressed by endothelial-like cells in the mDFAT cultures. Thus BMP10 and CV2 have important roles in coordinating cardiomyogenesis in progenitor cells.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Actinina/metabolismo , Adipócitos/citologia , Animais , Proliferação de Células , Células Cultivadas , Proteína Homeobox Nkx-2.5/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Troponina I/metabolismo
2.
In Vivo ; 37(5): 2028-2038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37652511

RESUMO

BACKGROUND/AIM: Stem cell therapy and regenerative medicine are promising for treating Parkinson's disease (PD) not only for the potential for cell replacement but also for the paracrine effect of stem cell secretion, especially proteins and nucleotide-enriched exosomes. This study investigated the neuroprotective effect of exosomes secreted from human adipocyte-derived stem cells (hADSCs) on PD. MATERIALS AND METHODS: hADSCs were isolated from the visceral fat tissue of individuals without PD who underwent bariatric surgery and were validated using surface markers and differentiation ability. Exosomes were isolated from the culture medium of hADSCs through serial ultracentrifugation and validated. Condensed exosomes were administered intravenously to 12-week-old MitoPark mice, transgenic parkinsonism mouse model with conditional knockout of mitochondrial transcription factor A in dopaminergic neurons, monthly for 3 months. Motor function, gait, and memory were assessed monthly, and immunohistochemical analysis of neuronal and inflammatory markers was performed at the end of the experiments. RESULTS: The hADSC-derived exosome-treated mice exhibited better motor function in beam walking and gait analyses than did the untreated mice. In the novel object recognition tests, the exosome-treated mice retained better memory function. Immunohistochemical analysis revealed that although exosome treatment did not prevent the loss of dopaminergic neurons in the substantia nigra of mice, it down-regulated microglial activation and neuroinflammation in the midbrain. CONCLUSION: hADSC-derived exosomes were neuroprotective in this in vivo mouse model of PD, likely because of their anti-inflammatory effect. Use of hADSC-derived exosomes may offer several beneficial effects in stem cell therapy. Since they can also be produced at an industrial level, they are a promising treatment option for PD and other neurodegenerative diseases.


Assuntos
Exossomos , Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Camundongos Transgênicos , Exossomos/metabolismo , Células-Tronco/metabolismo , Adipócitos
3.
Front Cell Dev Biol ; 9: 700481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327205

RESUMO

Adipose tissue is widely recognized as an extremely active endocrine organ producing adipokines as leptin that bridge metabolism and the immune system. Pre-B-cell leukemia homeobox (Pbx)-regulating protein-1 (PREP1) is a ubiquitous homeodomain transcription factor involved in the adipogenic differentiation and insulin-sensitivity processes. Leptin, as pleiotropic adipokine, and TGF-ß, known to be expressed by primary pre-adipocytes [adipose-derived stem cells (ASCs)] and mature differentiated adipocytes, modulate inflammatory responses. We aimed to assess for the first time if leptin and TGF-ß interfere with PREP1 expression in both ASCs and mature differentiated adipocytes. Human ASCs were isolated from subcutaneous adipose liposuction and, after expansion, fully differentiated to mature adipocytes. In both ASCs and adipocytes, leptin and TGF-ß1 significantly decreased the expression of PREP1, alone and following concurrent Toll-like receptor 4 (TLR4) activation. Moreover, in adipocytes, but not in ASCs, leptin increased TLR4 and IL-33 expression, whereas TGF-ß1 enhanced TLR4 and IL-6 expression. Taken together, we provide evidence for a direct regulation of PREP1 by leptin and TGF-ß1 in ASCs and mature adipocytes. The effects of leptin and TGF-ß1 on immune receptors and cytokines, however, are limited to mature adipocytes, suggesting that modulating immune responses depends on the differentiation of ASCs. Further studies are needed to fully understand the regulation of PREP1 expression and its potential for the development of new therapeutic approaches in obesity-related diseases.

4.
Facial Plast Surg Clin North Am ; 27(3): 419-423, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31280857

RESUMO

Best practices in fat transfer to the face focus on tissue harvest and processing techniques. This article discusses the role of adipose-derived mesenchymal stem cells (MSCs) in mitigating tissue loss in grafting. Discrepancies among common practice and recent study results have propagated uncertainty with long-term results. Fortunately, recent increases in the understanding of these MSCs are leading providers to identify statistically more favorable tissue donor sites, harvest technique, and preparation methods to increase their concentration in transferred tissue. Future studies are needed to support or confound the long-term effects of MSC transfer on facial fat grafting.


Assuntos
Tecido Adiposo/transplante , Rejuvenescimento , Envelhecimento da Pele , Coleta de Tecidos e Órgãos/métodos , Transplante Autólogo , Humanos
5.
Cell Transplant ; 28(12): 1560-1572, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31565957

RESUMO

Peripheral nerve regeneration following injury is often slow and impaired, which results in weakened and denervated muscle with subsequent atrophy. Human Wharton's jelly mesenchymal stem cells (hWJ-MSC) have potential regenerative properties which, however, remain unknown in mouse nerve recovery. This study investigated the effect of the topical application of hWJ-MSC onto repairing transected sciatic nerves in a mouse model. Human adipocyte-derived stem cells (hADSC) were used as a positive control. The sciatic nerve of BALB/c mice was transected at a fixed point and repaired under the microscope using 10-0 sutures. hWJ-MSC and hADSC were applied to the site of repair and mice were followed up for 1 year. The hWJ-MSC group had significantly better functional recovery of five-toe spread and gait angles compared with the negative control and hADSC groups. hWJ-MSC improved sciatic nerve regeneration in a dose-dependent fashion. The hWJ-MSC group had a better quality of regenerated nerve with an increased number of myelinated axons throughout. hWJ-MSC appear to be safe in mice after 1 year of follow-up. hWJ-MSC also expressed higher levels of neurotrophic factor-3, brain-derived neurotrophic factor, and glial-derived neurotrophic factor than hADSC. hWJ-MSC may promote better nerve recovery than hADSC because of this upregulation of neurotrophic factors.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento Neural/biossíntese , Regeneração Nervosa , Nervo Isquiático , Regulação para Cima , Animais , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
6.
J Neurotrauma ; 32(7): 506-15, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25225747

RESUMO

Adipocyte-derived stem cells have emerged as a novel source of stem cell therapy for their autologous and readily accessible and pluripotent potential to differentiate into different lineages such as neural stem cells (NSCs) and endothelial progenitor cells (EPCs). Transplantation of NSCs and EPCs has been promising for the repair of brain injury. We explored using co-transplanted hydrogel scaffold to improve the survival of the transplanted cells and recovery of neurological function. Adult Wistar rats were transplanted with EPC-hydrogel, NSC-hydrogel, NSC-EPC-hydrogel, EPC only, or NSC only 7 days after cortical contusion injury. Behavioral tests were performed to evaluate neurological function before, and 1, 2, 3, and 4 weeks after transplantation. Size of injury, extent of vascularization, as well as the survival and differentiation of the transplanted EPCs and NSCs, were evaluated at week 5. All transplantation groups displayed significantly better neurological function compared with the control groups. Improved neurological function correlated with significantly smaller injury volumes than that of the saline group. Using immunostaining, we have shown that while transplanted NSCs differentiated into both neurons and astrocytes, the EPCs were incorporated into vessel epithelia. The extent of reactive gliosis (based on glial fibrillary acidic protein immunostaining) was significantly reduced in all treatment groups (NSC-EPC-hydrogel, NSC-hydrogel, and EPC-hydrogel) when compared with the saline group, with the highest reduction in the NSC-EPC-hydrogel transplantation group. Thus, co-transplantation of hydrogel scaffold provides a more conducive environment for the survival and differentiation of NSCs and EPCs at the site of brain injury, leading to improved vascularization and better recovery of neurological function.


Assuntos
Adipócitos/transplante , Lesões Encefálicas/terapia , Recuperação de Função Fisiológica/fisiologia , Transplante de Células-Tronco/métodos , Animais , Comportamento Animal/fisiologia , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Hidrogel de Polietilenoglicol-Dimetacrilato , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Wistar , Alicerces Teciduais , Resultado do Tratamento
7.
Adipocyte ; 4(3): 181-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257991

RESUMO

With adipose-derived stem cells being in the focus of research in regenerative medicine, the need arises for fast reliable cultivation protocols. We have tested the cultivation of human adipose-derived stem cells in endothelial cell growth medium prior to induction and differentiation, against the long-established use of DMEM/F12 medium-based cultivation protocols. We found that cultivation in endothelial cell growth medium not only accelerates growth before induction and differentiation, but also allows shorter induction and differentiation times than those following precultivation with DMEM/F12 medium with regard to the formation of mature adipocytes and to the viability undifferentiated cells. These results were first observed morphologically but could be confirmed by performing adiponectin ELISA and cell proliferation assays.

8.
Organogenesis ; 10(2): 278-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24810568

RESUMO

PURPOSE: To evaluate the morphological and histological changes induced by PGA scaffold seeded with autologous adipose or muscle derived stem cells implanted on rabbit bladder wall. MATERIAL AND METHODS: Adipose derived stem cells (ADSCs) were obtained from the inguinal fat of eight rabbits and muscle derived stem cells (MDSCs) from the anterior tibial muscle of other eight rabbits. After culture and isolation, the cells were stained with Vybrant Red CM DiI and then implanted at third passage. Two PGA scaffolds were implanted on the bladder submucosa of each animal. On the right bladder side was implanted unseeded PGA scaffold while on the left side was implanted ADSCs or skeletal MDSCs seeded PGA scaffold. ADSCs were implanted in eight animals and MDSC in other eight animals. The animals were sacrificed at four and eight weeks. Histological evaluation was performed with Hematoxylin and Eosin, Masson's Trichrome and smooth muscle α-actin. RESULTS: We observed a mild inflammatory response in all the three groups. Seeded scaffolds induced higher lymphocytes and lower polimorphonuclear migration than controls. Fibrosis was more pronounced in the control groups. Smooth muscle α-actin was positive only in ADSC and MDSC seeded scaffolds. At four and eight weeks ADCSs and skeletal MDSCs labeled cells were found at the implant sites. CONCLUSIONS: The implantation of PGA scaffolds seeded with ADSC and MDSC induced less fibrosis than control and smooth muscle regeneration.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Músculos/citologia , Ácido Poliglicólico/farmacologia , Alicerces Teciduais/química , Bexiga Urinária/citologia , Actinas/metabolismo , Tecido Adiposo/citologia , Animais , Colágeno/metabolismo , Fibrose , Inflamação/patologia , Coelhos , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa