Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Genes Dev ; 33(3-4): 180-193, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692208

RESUMO

Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that the PDZ-binding motif of Claudin-2 is necessary for anchorage-independent growth of cancer cells and is required for liver metastasis. Several PDZ domain-containing proteins were identified that interact with the PDZ-binding motif of Claudin-2 in liver metastatic breast cancer cells, including Afadin, Arhgap21, Pdlim2, Pdlim7, Rims2, Scrib, and ZO-1. We specifically examined the role of Afadin as a potential Claudin-2-interacting partner that promotes breast cancer liver metastasis. Afadin associates with Claudin-2, an interaction that requires the PDZ-binding motif of Claudin-2. Loss of Afadin also impairs the ability of breast cancer cells to form colonies in soft agar and metastasize to the lungs or liver. Immunohistochemical analysis of Claudin-2 and/or Afadin expression in 206 metastatic breast cancer tumors revealed that high levels of both Claudin-2 and Afadin in primary tumors were associated with poor disease-specific survival, relapse-free survival, lung-specific relapse, and liver-specific relapse. Our findings indicate that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Moreover, combining Claudin-2 and Afadin as prognostic markers better predicts the potential of breast cancer to metastasize to soft tissues.


Assuntos
Neoplasias da Mama/fisiopatologia , Claudina-2/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Proteínas dos Microfilamentos/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Claudina-2/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Proteínas dos Microfilamentos/genética , Metástase Neoplásica , Domínios PDZ , Prognóstico , Análise de Sobrevida , Células Tumorais Cultivadas
2.
J Cell Sci ; 137(6)2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38323935

RESUMO

Robust linkage between adherens junctions and the actomyosin cytoskeleton allows cells to change shape and move during morphogenesis without tearing tissues apart. The Drosophila multidomain protein Canoe and its mammalian homolog afadin are crucial for this, as in their absence many events of morphogenesis fail. To define the mechanism of action for Canoe, we are taking it apart. Canoe has five folded protein domains and a long intrinsically disordered region. The largest is the Dilute domain, which is shared by Canoe and myosin V. To define the roles of this domain in Canoe, we combined biochemical, genetic and cell biological assays. AlphaFold was used to predict its structure, providing similarities and contrasts with Myosin V. Biochemical data suggested one potential shared function - the ability to dimerize. We generated Canoe mutants with the Dilute domain deleted (CnoΔDIL). Surprisingly, they were viable and fertile. CnoΔDIL localized to adherens junctions and was enriched at junctions under tension. However, when its dose was reduced, CnoΔDIL did not provide fully wild-type function. Furthermore, canoeΔDIL mutants had defects in the orchestrated cell rearrangements of eye development. This reveals the robustness of junction-cytoskeletal connections during morphogenesis and highlights the power of natural selection to maintain protein structure.


Assuntos
Proteínas de Drosophila , Miosina Tipo V , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Miosina Tipo V/metabolismo , Citoesqueleto/metabolismo , Junções Intercelulares/metabolismo , Junções Aderentes/metabolismo , Morfogênese , Caderinas/metabolismo , Mamíferos/metabolismo
3.
Dev Biol ; 501: 20-27, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37276970

RESUMO

The continuity of a lumen within an epithelial tubule is critical for its function. We previously found that the F-actin binding protein Afadin is required for timely lumen formation and continuity in renal tubules formed from the nephrogenic mesenchyme in mice. Afadin is a known effector and interactor of the small GTPase Rap1, and in the current study, we examine the role of Rap1 in nephron tubulogenesis. Here, we demonstrate that Rap1 is required for nascent lumen formation and continuity in cultured 3D epithelial spheroids and in vivo in murine renal epithelial tubules derived from the nephrogenic mesenchyme, where its absence ultimately leads to severe morphogenetic defects in the tubules. By contrast, Rap1 is not required for lumen continuity or morphogenesis in renal tubules derived from the ureteric epithelium, which differ in that they form by extension from a pre-existing tubule. We further demonstrate that Rap1 is required for correct localization of Afadin to adherens junctions both in vitro and in vivo. Together, these results suggest a model in which Rap1 localizes Afadin to junctional complexes, which in turn regulates nascent lumen formation and positioning to ensure continuous tubulogenesis.


Assuntos
Túbulos Renais , Proteínas dos Microfilamentos , Animais , Camundongos , Junções Aderentes/metabolismo , Túbulos Renais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Néfrons/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473701

RESUMO

This work analyzes the role of the tight junction (TJ) protein ZO-2 on mechanosensation. We found that the lack of ZO-2 reduced apical membrane rigidity measured with atomic force microscopy, inhibited the association of γ-actin and JAM-A to the cell border, and instead facilitated p114RhoGEF and afadin accumulation at the junction, leading to an enhanced mechanical tension at the TJ measured by FRET, with a ZO-1 tension probe, and increased tricellular TJ tension. Simultaneously, adherens junction tension measured with an E-cadherin probe was unaltered. The stability of JAM-A and ZO-2 binding was assessed by a collaborative in silico study. The absence of ZO-2 also impacted the cell response to the substrate, as monolayers plated in 20 kPa hydrogels developed holes not seen in parental cultures and displayed a retarded elongation and formation of cell aggregates. The absence of ZO-2 was sufficient to induce YAP and Snail nuclear accumulation in cells cultured over glass, but when ZO-2 KD cells were plated in nanostructured ridge arrays, they displayed an increased abundance of nuclear Snail and conspicuous internalization of claudin-4. These results indicate that the absence of ZO-2 also impairs the response of cells to substrate stiffness and exacerbates transformation triggered by substrate topography.


Assuntos
Actinas , Junções Íntimas , Actinas/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Fosfoproteínas/metabolismo
5.
J Biol Chem ; 298(10): 102426, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030821

RESUMO

The apical junctional complex (AJC) consists of adherens junctions (AJs) and tight junctions and regulates epithelial integrity and remodeling. However, it is unclear how AJC organization is regulated based on environmental cues. We found here using cultured EpH4 mouse mammary epithelial cells that fetal bovine serum (FBS) in a culture medium showed an activity to promote AJC organization and that FBS showed an activity to promote tight junction formation even in the absence of AJ proteins, such as E-cadherin, αE-catenin, and afadin. Furthermore, we purified the individual factor responsible for these functions from FBS and identified this molecule as lysophosphatidic acid (LPA). In validation experiments, purified LPA elicited the same activity as FBS. In addition, we found that the AJC organization-promoting activity of LPA was mediated through the LPA receptor 1/5 via diacylglycerol-novel PKC and Rho-ROCK pathway activation in a mutually independent, but complementary, manner. We demonstrated that the Rho-ROCK pathway activation-mediated AJC organization was independent of myosin II-induced actomyosin contraction, although this signaling pathway was previously shown to induce myosin II activation. These findings are in contrast to the literature, as previous results suggested an AJC organization-disrupting activity of LPA. The present results indicate that LPA in serum has an AJC organization-promoting activity in a manner dependent on or independent of AJ proteins.


Assuntos
Junções Aderentes , Células Epiteliais , Lisofosfolipídeos , Animais , Camundongos , Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Miosina Tipo II/metabolismo , Junções Íntimas/metabolismo , Lisofosfolipídeos/sangue
6.
Development ; 147(21)2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32554531

RESUMO

Cleft palate (CP), one of the most common congenital conditions, arises from failures in secondary palatogenesis during embryonic development. Several human genetic syndromes featuring CP and ectodermal dysplasia have been linked to mutations in genes regulating cell-cell adhesion, yet mouse models have largely failed to recapitulate these findings. Here, we use in utero lentiviral-mediated genetic approaches in mice to provide the first direct evidence that the nectin-afadin axis is essential for proper palate shelf elevation and fusion. Using this technique, we demonstrate that palatal epithelial conditional loss of afadin (Afdn) - an obligate nectin- and actin-binding protein - induces a high penetrance of CP, not observed when Afdn is targeted later using Krt14-Cre We implicate Nectin1 and Nectin4 as being crucially involved, as loss of either induces a low penetrance of mild palate closure defects, while loss of both causes severe CP with a frequency similar to Afdn loss. Finally, expression of the human disease mutant NECTIN1W185X causes CP with greater penetrance than Nectin1 loss, suggesting this alteration may drive CP via a dominant interfering mechanism.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Nectinas/genética , Animais , Células Epiteliais/metabolismo , Humanos , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organogênese , Palato/embriologia , Penetrância , Síndrome
7.
Bioessays ; 43(1): e2000221, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165933

RESUMO

Adherens (AJ) and tight junctions (TJ) maintain cell-cell adhesions and cellular polarity in normal tissues. Afadin, a multi-domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal-modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro-metastatic functions. In this review, we will explore the dichotomous roles that afadin plays during cancer progression.


Assuntos
Proteínas dos Microfilamentos , Neoplasias , Junções Aderentes , Adesão Celular , Polaridade Celular , Humanos , Neoplasias/genética , Junções Íntimas
8.
J Physiol ; 600(4): 885-902, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34387373

RESUMO

KEY POINTS: Afadin is a ubiquitously expressed scaffold protein with a recently discovered role in insulin signalling and glucose metabolism. Insulin-stimulated phosphorylation of Afadin at S1795 occurs in insulin-responsive tissues such as adipose tissue, muscle, liver, pancreas and heart. Afadin abundance and AfadinS1795 phosphorylation are dynamically regulated in metabolic tissues during diet-induced obesity progression. Genetic silencing of AfadinS1795 phosphorylation improves glucose homeostasis in the early stages of diet-induced metabolic dysregulation. AfadinS1795 phosphorylation contributes to the early development of obesity-related complications in mice. ABSTRACT: Obesity is associated with systemic insulin resistance and numerous metabolic disorders. Yet, the mechanisms underlying impaired insulin action during obesity remain to be fully elucidated. Afadin is a multifunctional scaffold protein with the ability to modulate insulin action through its phosphorylation at S1795 in adipocytes. In the present study, we report that insulin-stimulated AfadinS1795 phosphorylation is not restricted to adipose tissues, but is a common signalling event in insulin-responsive tissues including muscle, liver, pancreas and heart. Furthermore, a dynamic regulation of Afadin abundance occurred during diet-induced obesity progression, while its phosphorylation was progressively attenuated. To investigate the role of AfadinS1795 phosphorylation in the regulation of whole-body metabolic homeostasis, we generated a phospho-defective mouse model (Afadin SA) in which the Afadin phosphorylation site was silenced (S1795A) at the whole-body level using CRISPR-Cas9-mediated gene editing. Metabolic characterization of these mice under basal physiological conditions or during a high-fat diet (HFD) challenge revealed that preventing AfadinS1795 phosphorylation improved insulin sensitivity and glucose tolerance and increased liver glycogen storage in the early stage of diet-induced metabolic dysregulation, without affecting body weight. Together, our findings reveal that AfadinS1795 phosphorylation in metabolic tissues is critical during obesity progression and contributes to promote systemic insulin resistance and glucose intolerance in the early phase of diet-induced obesity.


Assuntos
Resistência à Insulina , Animais , Dieta Hiperlipídica , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas dos Microfilamentos , Fosforilação
9.
Mol Cancer ; 21(1): 29, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073911

RESUMO

BACKGROUND: Metastasis causes the majority of cancer-related deaths worldwide. Increasing studies have revealed that circRNAs are associated with the carcinogenesis and metastasis of many cancers. Nevertheless, the biological mechanisms of circRNAs in breast cancer (BC) liver metastasis remain extremely ambiguous. METHODS: In this study, we identified circROBO1 from three pairs of primary BC and metastatic liver sites by RNA sequencing. FISH assays and RT-qPCR were conducted to validate the existence and expression of circROBO1. The oncogenic role of circROBO1 was demonstrated both in vitro and in vivo. Western blot, ChIP, RIP, RNA pull-down, and dual-luciferase reporter assays were used to confirm the interaction of the feedback loop among circROBO1, miR-217-5p, KLF5, and FUS. Meanwhile, the regulation of selective autophagy was investigated by immunofluorescence, CoIP, and western blot. RESULTS: In this study, upregulated expression of circROBO1 was found in BC-derived liver metastases and was correlated with poor prognosis. Knockdown of circROBO1 strikingly inhibited the proliferation, migration, and invasion of BC cells, whereas overexpression of circROBO1 showed the opposite effects. Moreover, overexpression of circROBO1 promoted tumor growth and liver metastasis in vivo. Further research revealed that circROBO1 could upregulate KLF5 by sponging miR-217-5p, allowing KLF5 to activate the transcription of FUS, which would promote the back splicing of circROBO1. Therefore, a positive feedback loop comprising circROBO1/KLF5/FUS was formed. More importantly, we found that circROBO1 inhibited selective autophagy of afadin by upregulating KLF5. CONCLUSIONS: Our results demonstrated that circROBO1 facilitates the carcinogenesis and liver metastasis of BC through the circROBO1/KLF5/FUS feedback loop, which inhibits the selective autophagy of afadin by suppressing the transcription of BECN1. Therefore, circROBO1 could be used not only as a potential prognostic marker but also as a therapeutic target in BC.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Proteínas do Tecido Nervoso/genética , RNA Circular , Proteína FUS de Ligação a RNA/genética , Receptores Imunológicos/genética , Regiões 3' não Traduzidas , Animais , Autofagia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Camundongos , MicroRNAs/genética , Proteínas dos Microfilamentos , Modelos Biológicos , Interferência de RNA , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Roundabout
10.
Mol Microbiol ; 116(6): 1407-1419, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34704304

RESUMO

Listeria monocytogenes is a food-borne bacterium that causes gastroenteritis, meningitis, or abortion. L. monocytogenes induces its internalization (entry) into human cells and either spreads laterally in tissues or transcytoses to traverse anatomical barriers. In this review, we discuss mechanisms by which five structurally related proteins of the "internalin" family of L. monocytogenes (InlA, InlB, InlC, InlF, and InlP) interact with distinct host receptors to promote infection of human cells and/or crossing of the intestinal, blood-brain, or placental barriers. We focus on recent results demonstrating that the internalin proteins InlA, InlB, and InlC exploit exocytic pathways to stimulate transcytosis, entry, or cell-to-cell spread, respectively. We also discuss evidence that InlA-mediated transcytosis contributes to traversal of the intestinal barrier, whereas InlF promotes entry into endothelial cells to breach the blood-brain barrier. InlB also facilitates the crossing of the blood-brain barrier, but does so by extending the longevity of infected monocytes that may subsequently act as a "Trojan horse" to transfer bacteria to the brain. InlA, InlB, and InlP each contribute to fetoplacental infection by targeting syncytiotrophoblast or cytotrophoblast layers of the placenta. This work highlights the diverse functions of internalins and the complex mechanisms by which these structurally related proteins contribute to disease.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Animais , Proteínas de Bactérias/genética , Humanos , Listeria monocytogenes/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transcitose
11.
Mol Cell Neurosci ; 115: 103653, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34242750

RESUMO

Synapses are interneuronal junctions which form neuronal networks and play roles in a variety of functions, including learning and memory. Two types of junctions, synaptic junctions (SJs) and puncta adherentia junctions (PAJs), have been identified. SJs are found at all excitatory and inhibitory synapses whereas PAJs are found at excitatory synapses, but not inhibitory synapses, and particularly well developed at hippocampal mossy fiber giant excitatory synapses. Both SJs and PAJs are mediated by cell adhesion molecules (CAMs). Major CAMs at SJs are neuroligins-neurexins and Nectin-like molecules (Necls)/CADMs/SynCAMs whereas those at PAJs are nectins and cadherins. In addition to synaptic PAJs, extrasynaptic PAJs have been identified at contact sites between neighboring dendrites near synapses and regulate synapse formation. In addition to SJs and PAJs, a new type of cell adhesion apparatus different from these junctional apparatuses has been identified and named nectin/Necl spots. One nectin spot at contact sites between neighboring dendrites at extrasynaptic regions near synapses regulates synapse formation. Several members of nectins and Necls had been identified as viral receptors before finding their physiological functions as CAMs and evidence is accumulating that many nectins and Necls are related to onset and progression of neurological diseases. We review here nectin and Necls in synapse formation and involvement in neurological diseases.


Assuntos
Fibras Musgosas Hipocampais , Sinapses , Caderinas/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Nectinas , Sinapses/metabolismo
12.
Development ; 145(2)2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29361565

RESUMO

Epithelial apical-basal polarity drives assembly and function of most animal tissues. Polarity initiation requires cell-cell adherens junction assembly at the apical-basolateral boundary. Defining the mechanisms underlying polarity establishment remains a key issue. Drosophila embryos provide an ideal model, as 6000 polarized cells assemble simultaneously. Current data place the actin-junctional linker Canoe (fly homolog of Afadin) at the top of the polarity hierarchy, where it directs Bazooka/Par3 and adherens junction positioning. Here we define mechanisms regulating Canoe localization/function. Spatial organization of Canoe is multifaceted, involving membrane localization, recruitment to nascent junctions and macromolecular assembly at tricellular junctions. Our data suggest apical activation of the small GTPase Rap1 regulates all three events, but support multiple modes of regulation. The Rap1GEF Dizzy (PDZ-GEF) is crucial for Canoe tricellular junction enrichment but not apical retention. The Rap1-interacting RA domains of Canoe mediate adherens junction and tricellular junction recruitment but are dispensable for membrane localization. Our data also support a role for Canoe multimerization. These multifactorial inputs shape Canoe localization, correct Bazooka and adherens junction positioning, and thus apical-basal polarity. We integrate the existing data into a new polarity establishment model.


Assuntos
Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Junções Aderentes/metabolismo , Animais , Animais Geneticamente Modificados , Polaridade Celular/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Gastrulação , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Modelos Biológicos , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Interferência de RNA , Complexo Shelterina , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética
13.
EMBO Rep ; 20(8): e48216, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31264358

RESUMO

Insulin orchestrates metabolic homeostasis through a complex signaling network for which the precise mechanisms controlling its fine-tuning are not completely understood. Here, we report that Afadin, a scaffold protein, is phosphorylated on S1795 (S1718 in humans) in response to insulin in adipocytes, and this phosphorylation is impaired with obesity and insulin resistance. In turn, loss of Afadin enhances the response to insulin in adipose tissues via upregulation of the insulin receptor protein levels. This happens in a cell-autonomous and phosphorylation-dependent manner. Insulin-stimulated Afadin-S1795 phosphorylation modulates Afadin binding with interaction partners in adipocytes, among which HDAC6 preferentially interacts with phosphorylated Afadin and acts as a key intermediate to suppress insulin receptor protein levels. Adipose tissue-specific Afadin depletion protects against insulin resistance and improves glucose homeostasis in diet-induced obese mice, independently of adiposity. Altogether, we uncover a novel insulin-induced cellular feedback mechanism governed by the interaction of Afadin with HDAC6 to negatively control insulin action in adipocytes, which may offer new strategies to alleviate insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Antígenos CD/genética , Desacetilase 6 de Histona/genética , Insulina/genética , Proteínas dos Microfilamentos/genética , Obesidade/genética , Processamento de Proteína Pós-Traducional , Receptor de Insulina/genética , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Antígenos CD/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Desacetilase 6 de Histona/metabolismo , Homeostase/genética , Humanos , Insulina/metabolismo , Insulina/farmacologia , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fosforilação , Cultura Primária de Células , Receptor de Insulina/metabolismo
14.
Am J Physiol Cell Physiol ; 318(3): C486-C501, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913699

RESUMO

AMP-activated protein kinase (AMPK) activation promotes early stages of epithelial junction assembly. AMPK activation in MDCK renal epithelial cells facilitates localization of the junction-associated proteins aPKCζ and Par3 to the plasma membrane and promotes conversion of Cdc42, a key regulator of epithelial polarization and junction assembly, to its active GTP bound state. Furthermore, Par3 is an important regulator of AMPK-mediated aPKCζ localization. Both aPKCζ and Par3 serve as intermediates in AMPK-mediated junction assembly, with inhibition of aPKCζ activity or Par3 knockdown disrupting AMPK's ability to facilitate zonula occludens (ZO-1) localization. AMPK phosphorylates the adherens junction protein afadin and regulates its interaction with the tight-junction protein zonula occludens-1. Afadin is phosphorylated at two critical sites, S228 (residing within an aPKCζ consensus site) and S1102 (residing within an AMPK consensus site), that are differentially regulated during junction assembly and that exert different effects on the process. Expression of phospho-defective mutants (S228A and S1102A) perturbed ZO-1 localization to the plasma membrane during AMPK-induced junction assembly. Expression of S228A increased the ZO-1/afadin interaction, while S1102A reduced this interaction during extracellular calcium-induced junction assembly. Inhibition of aPKCζ activity also increased the ZO-1/afadin interaction. Taken together, these data suggest that aPKCζ phosphorylation of afadin terminates the ZO-1/afadin interaction and thus permits the later stages of junction assembly.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Membrana Celular/enzimologia , Junções Íntimas/enzimologia , Animais , Membrana Celular/química , Cães , Células Madin Darby de Rim Canino , Camundongos , Fosforilação/fisiologia , Proteína Quinase C/metabolismo , Junções Íntimas/química , Proteína da Zônula de Oclusão-1/metabolismo
15.
Development ; 144(14): 2570-2583, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619817

RESUMO

Over the past decade an intriguing connection between asymmetric cell division, stem cells and tumorigenesis has emerged. Neuroblasts, which are the neural stem cells of the Drosophila central nervous system, divide asymmetrically and constitute an excellent paradigm for investigating this connection further. Here we show that the simultaneous loss of the asymmetric cell division regulators Canoe (afadin in mammals) and Scribble in neuroblast clones leads to tumor-like overgrowth through both a severe disruption of the asymmetric cell division process and canoe loss-mediated Ras-PI3K-Akt activation. Moreover, canoe loss also interacts synergistically with scribble loss to promote overgrowth in epithelial tissues, here just by activating the Ras-Raf-MAPK pathway. discs large 1 and lethal (2) giant larvae, which are functionally related to scribble, contribute to repress the Ras-MAPK signaling cascade in epithelia. Hence, our work uncovers novel cooperative interactions between all these well-conserved tumor suppressors that ensure tight regulation of the Ras signaling pathway.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , IMP Desidrogenase/metabolismo , Proteínas de Membrana/genética , Mutação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose , Divisão Celular Assimétrica/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Proteínas de Drosophila/deficiência , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Técnicas de Inativação de Genes , Genes de Insetos , IMP Desidrogenase/genética , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Modelos Biológicos , Transdução de Sinais
16.
Development ; 144(19): 3511-3520, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860115

RESUMO

In many types of tubules, continuity of the lumen is paramount to tubular function, yet how tubules generate lumen continuity in vivo is not known. We recently found that the F-actin-binding protein afadin is required for lumen continuity in developing renal tubules, though its mechanism of action remains unknown. Here, we demonstrate that afadin is required for lumen continuity by orienting the mitotic spindle during cell division. Using an in vitro 3D cyst model, we find that afadin localizes to the cell cortex adjacent to the spindle poles and orients the mitotic spindle. In tubules, cell division may be oriented relative to two axes: longitudinal and apical-basal. Unexpectedly, in vivo examination of early-stage developing nephron tubules reveals that cell division is not oriented in the longitudinal (or planar-polarized) axis. However, cell division is oriented perpendicular to the apical-basal axis. Absence of afadin in vivo leads to misorientation of apical-basal cell division in nephron tubules. Together, these results support a model whereby afadin determines lumen placement by directing apical-basal spindle orientation, resulting in a continuous lumen and normal tubule morphogenesis.


Assuntos
Divisão Celular , Túbulos Renais/embriologia , Túbulos Renais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Células Cultivadas , Cães , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Doenças Renais Císticas/patologia , Túbulos Renais/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Morfogênese , Néfrons/metabolismo , Néfrons/patologia , Fuso Acromático/metabolismo
17.
J Cell Sci ; 130(1): 111-118, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815408

RESUMO

EphA2 is a receptor tyrosine kinase that helps to maintain epidermal tissue homeostasis. A proximity-dependent biotin identification (BioID) approach was used to identify proteins in close proximity to EphA2 within primary human keratinocytes and three-dimensional (3D) reconstituted human epidermis (RHE) cultures to map a putative protein interaction network for this membrane receptor that exhibits a polarized distribution in stratified epithelia. Although a subset of known EphA2 interactors were identified in the BioID screen, >97% were uniquely detected in keratinocytes with over 50% of these vicinal proteins only present in 3D human epidermal culture. Afadin (AFDN), a cytoskeletal and junction-associated protein, was present in 2D and 3D keratinocyte cultures, and validated as a so-far-unknown EphA2-interacting protein. Loss of EphA2 protein disrupted the subcellular distribution of afadin and occludin in differentiated keratinocytes, leading to impairment of tight junctions. Collectively, these studies illustrate the use of the BioID approach in order to map receptor interaction networks in 3D human epithelial cultures, and reveal a positive regulatory role for EphA2 in the organization of afadin and epidermal tight junctions.


Assuntos
Epiderme/metabolismo , Queratinócitos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteômica , Receptor EphA2/metabolismo , Junções Íntimas/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Células Cultivadas , Proteínas de Escherichia coli/metabolismo , Humanos , Recém-Nascido , Masculino , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes
18.
Genes Cells ; 23(3): 185-199, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29431241

RESUMO

The apical junctional complex consists of adherens junctions (AJs) and tight junctions (TJs) in polarized epithelial cells, which are attached to each other to form a sheet. Actin filaments (F-actin) are associated with AJs and TJs and required for the formation and maintenance of this complex. l-Afadin is an F-actin-binding protein, which is localized at AJs through binding to the cell adhesion molecule nectin, and regulates the formation of AJs and TJs. However, the role of the F-actin-binding activity of l-afadin for the formation of the apical junctional complex remains unknown. We generated here the cultured EpH4 mouse mammary epithelial cells in which afadin was genetically ablated. In the Ca2+ switch assay, the formation of both AJs and TJs was markedly impaired in the afadin-deficient cells. Re-expression of l-afadin in the afadin-deficient cells fully restored the formation of both AJs and TJs, but the re-expression of the l-afadin mutant lacking the FAB domain did not completely restore the formation of AJs or TJs. These results indicate that the F-actin-binding activity of l-afadin is required for enhancing the formation of both AJs and TJs.


Assuntos
Junções Aderentes/fisiologia , Adesão Celular , Glândulas Mamárias Animais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Junções Íntimas/fisiologia , Actinas/genética , Actinas/metabolismo , Animais , Sistemas CRISPR-Cas , Cálcio/metabolismo , Células Cultivadas , Feminino , Glândulas Mamárias Animais/citologia , Camundongos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/genética
19.
Arterioscler Thromb Vasc Biol ; 38(5): 1159-1169, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29599137

RESUMO

OBJECTIVE: We previously reported that afadin, an actin filament-binding protein, regulated vascular endothelial growth factor-induced angiogenesis. However, the underlying molecular mechanisms are poorly understood. Here, we investigated the mechanisms of how Rho-associated kinase is activated in afadin-knockdown human umbilical vein endothelial cells (HUVECs) and how its activation is involved in defects of vascular endothelial growth factor-induced network formation and migration of the cells. APPROACH AND RESULTS: Knockdown of afadin or ArhGAP29, a GTPase-activating protein for RhoA, increased Rho-associated kinase activity and reduced the vascular endothelial growth factor-induced network formation and migration of cultured HUVECs, accompanied by the defective formation of membrane protrusions, such as lamellipodia and peripheral ruffles. Treatment of the afadin- or ArhGAP29-knockdown HUVECs with Rho-associated kinase inhibitors, Y-27632 or fasudil, partially restored the reduced network formation and migration as well as the defective formation of membrane protrusions. ArhGAP29 bound to afadin and was colocalized with afadin at the leading edge of migrating HUVECs. The defective formation of membrane protrusions in ArhGAP29-knockdown HUVECs was restored by expression of mutant ArhGAP29 that bound to afadin and contained a RhoGAP domain but not mutant ArhGAP29 that could bind to afadin and lacked the RhoGAP domain or mutant ArhGAP29 that could not bind to afadin and contained the RhoGAP domain. This suggested the requirement of both the interaction of afadin with ArhGAP29 and RhoGAP activity of ArhGAP29 for migration of HUVECs. CONCLUSIONS: Our results highlight a critical role of the afadin-ArhGAP29 axis for the regulation of Rho-associated kinase activity during vascular endothelial growth factor-induced network formation and migration of HUVECs.


Assuntos
Movimento Celular/efeitos dos fármacos , Proteínas Ativadoras de GTPase/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Benzopiranos/farmacologia , Células Cultivadas , Proteínas Ativadoras de GTPase/genética , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Proteínas dos Microfilamentos/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Pseudópodes/enzimologia , Complexo Shelterina , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Telômeros/metabolismo , Quinases Associadas a rho/antagonistas & inibidores
20.
Mol Cell Neurosci ; 92: 40-49, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29969655

RESUMO

A hippocampal mossy fiber synapse has a complex structure in which presynaptic boutons attach to the dendritic trunk by puncta adherentia junctions (PAJs) and wrap multiply-branched spines, forming synaptic junctions. It was previously shown that afadin regulates the formation of the PAJs cooperatively with nectin-1, nectin-3, and N-cadherin. Afadin is a nectin-binding protein with two splice variants, l-afadin and s-afadin: l-afadin has an actin filament-binding domain, whereas s-afadin lacks it. It remains unknown which variant is involved in the formation of the PAJs or how afadin regulates it. We showed here that re-expression of l-afadin, but not s-afadin, in the afadin-deficient cultured hippocampal neurons in which the PAJ-like structure was disrupted, restored this structure as estimated by the accumulation of N-cadherin and αΝ-catenin. The l-afadin mutant, in which the actin filament-binding domain was deleted, or the l-afadin mutant, in which the αΝ-catenin-binding domain was deleted, did not restore the PAJ-like structure. These results indicate that l-afadin, but not s-afadin, regulates the formation of the hippocampal synapse PAJ-like structure through the binding to actin filaments and αN-catenin. We further found here that l-afadin bound αN-catenin, but not γ-catenin, whereas s-afadin bound γ-catenin, but hardly αN-catenin. These results suggest that the inability of s-afadin to form the hippocampal synapse PAJ-like structure is due to its inability to efficiently bind αN-catenin.


Assuntos
Junções Aderentes/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Sinapses/metabolismo , Actinas/metabolismo , Animais , Sítios de Ligação , Cateninas/metabolismo , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa