Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(1): 257-268, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30401748

RESUMO

The mechanisms leading to self-assembly of misfolded proteins into amyloid aggregates have been studied extensively in the test tube under well-controlled conditions. However, to what extent these processes are representative of those in the cellular environment remains unclear. Using super-resolution imaging of live cells, we show here that an amyloidogenic polyglutamine-containing protein first forms small, amorphous aggregate clusters in the cytosol, chiefly by diffusion. Dynamic interactions among these clusters limited their elongation and led to structures with a branched morphology, differing from the predominantly linear fibrils observed in vitro Some of these clusters then assembled via active transport at the microtubule-organizing center and thereby initiated the formation of perinuclear aggresomes. Although it is widely believed that aggresome formation is entirely governed by active transport along microtubules, here we demonstrate, using a combined approach of advanced imaging and mathematical modeling, that diffusion is the principal mechanism driving aggresome expansion. We found that the increasing surface area of the expanding aggresome increases the rate of accretion caused by diffusion of cytosolic aggregates and that this pathway soon dominates aggresome assembly. Our findings lead to a different view of aggresome formation than that proposed previously. We also show that aggresomes mature over time, becoming more compacted as the structure grows. The presence of large perinuclear aggregates profoundly affects the behavior and health of the cell, and our super-resolution imaging results indicate that aggresome formation and development are governed by highly dynamic processes that could be important for the design of potential therapeutic strategies.


Assuntos
Núcleo Celular/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Modelos Biológicos , Peptídeos/farmacocinética , Animais , Feminino , Masculino , Camundongos , Microscopia de Fluorescência
2.
Food Sci Nutr ; 6(8): 2499-2514, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30510751

RESUMO

SCOPE: Copper supplementation in nutrition has evolved from using inorganic mineral salts to organically chelated minerals but with limited knowledge of the impact at the cellular level. METHODS: Here, the impact of inorganic and organic nutrient forms (glycinate, organic acid, and proteinate) of copper on the cellular level is investigated on intestinal cell lines, HT29 and Caco-2, after a 2-hr acute exposure to copper compounds and following a 10-hr recovery. RESULTS: Following the 10-hr recovery, increases were observed in proteins involved in metal binding (metallothioneins) and antioxidant response (sulfiredoxin 1 and heme oxygenase 1), and global proteomic analysis suggested recruitment of the unfolded protein response and proteosomal overloading. Copper organic acid chelate, the only treatment to show striking and sustained reactive oxygen species generation, had the greatest impact on ubiquitinated proteins, reduced autophagy, and increased aggresome formation, reducing growth in both cell lines. The least effect was noted in copper proteinate with negligible impact on aggresome formation or extended growth for either cell line. CONCLUSION: The type and source of copper can impact significantly at the cellular level.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa