Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(13): e2201251, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35694770

RESUMO

In vitro epidermis models are important to evaluate and study disease progression and possible dermal drug delivery. An in vitro epidermis model using floating paper chips as a scaffold for proliferation and differentiation of primary human keratinocytes is reported. The formation of the four main layers of the epidermis (i.e., basal, spinosum, granulose, and cornified layers) is confirmed. The development of a cornified layer and the tight junction formation are evaluated as well as the alterations of organelles during the differentiation process. Further, this in vitro model is used to assess keratinocyte migration. Finally, magnetic micromotors are assembled, and their ability to aid cell migration on paper chips is confirmed when a static magnetic field is present. Taken together, this attempt to combine bottom-up synthetic biology with dermatology offers interesting opportunities for studying skin disease pathologies and evaluate possible treatments.


Assuntos
Epiderme , Queratinócitos , Humanos , Pele , Células Epidérmicas , Movimento Celular , Diferenciação Celular
2.
Small ; 18(39): e2203872, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045100

RESUMO

The development of multifunctional and robust swimming microrobots working at the free air-liquid interface has encountered challenge as new manipulation strategies are needed to overcome the complicated interfacial restrictions. Here, flexible but reliable mechanisms are shown that achieve a remote-control bubble microrobot with multiple working modes and high maneuverability by the assistance of a soft air-liquid interface. This bubble microrobot is developed from a hollow Janus microsphere (JM) regulated by a magnetic field, which can implement switchable working modes like pusher, gripper, anchor, and sweeper. The collapse of the microbubble and the accompanying directional jet flow play a key role for functioning in these working modes, which is analogous to a "bubble tentacle." Using a simple gamepad, the orientation and the navigation of the bubble microrobot can be easily manipulated. In particular, a speed modulation method is found for the bubble microrobot, which uses vertical magnetic field to control the orientation of the JM and the direction of the bubble-induced jet flow without changing the fuel concentration. The findings demonstrate a substantial advance of the bubble microrobot specifically working at the air-liquid interface and depict some nonintuitive mechanisms that can help develop more complicated microswimmers.


Assuntos
Microbolhas , Água , Campos Magnéticos
3.
J Hazard Mater ; 465: 133182, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38071776

RESUMO

The detection of per- and polyfluoroalkyl substances (PFAS) in aqueous matrices is an emerging environmental concern due to their persistent, bioaccumulative and toxic properties. Foam fractionation has emerged as a viable method for removing and concentrating PFAS from aqueous matrices. The method exploits the surface-active nature of the PFAS to adsorb at the air-liquid interfaces of rising air bubbles, resulting in foam formation at the top of a foam fractionator. The removal of PFAS is then achieved through foam harvesting. Foam fractionation has gained increasing attention owing to its inherent advantages, including simplicity and low operational costs. The coupling of foam fractionation with destructive technologies could potentially serve as a comprehensive treatment train for future PFAS management in aqueous matrices. The PFAS-enriched foam, which has a smaller volume, can be directed to subsequent destructive treatment technologies. In this review, we delve into previous experiences with foam fractionation for PFAS removal from various aqueous matrices and critically analyse their key findings. Then, the recent industry advancements and commercial projects that utilise this technology are identified. Finally, future research needs are suggested based on the current challenges.

4.
Water Res ; 266: 122397, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39288725

RESUMO

The concept of incorporating foam fractionation in aerated bioreactors at wastewater treatment plants (WWTPs) for the removal of per- and polyfluoroalkyl substances (PFAS) has recently been proposed. The extent of PFAS enrichment in aerated bioreactors' foams, as indicated by enrichment factors (EFs), has been observed to vary widely. Laboratory evidence has shown that factors affecting PFAS enrichment in foams include conductivity, surfactant concentrations and initial PFAS concentrations. However, real wastewaters are complex heterogenous matrices with physical, chemical and biological characteristics potentially contributing to the phenomenon of PFAS partitioning into foams. In this study, we characterised mixed liquor suspensions, including conductivity, filament content, aqueous PFAS concentrations, surface tension and total suspended solids concentrations (TSS) as well as foams, including bubble size and half-life. We used statistical tools - linear mixed-effects model - to establish relationships between PFAS enrichment in aerated bioreactor foams and the examined characteristics. We found that some of the examined characteristics, specifically filament content, surface tension and TSS concentrations measured in mixed liquor suspension and foam half-life, are negatively and significantly associated with the enrichment of longer chain PFAS (with perfluorinated carbon number ≥ 6). Of these, filament content is the important determinant of PFAS enrichment, potentially leading to an increase in, for example, perfluorooctanoic acid (PFOA) EF from 3 to 100 between typical filamentous and non-filamentous suspended biomass. However, enrichment of shorter chain PFAS (with perfluorinated carbon number ≤ 5) is negligible and is not affected by the characteristics that were measured. The findings of our study may serve as valuable information for the implementation of foam fractionation at WWTPs by elucidating the drivers that contribute to the enrichment of longer chain PFAS, under conditions typically found at WWTPs.

5.
J Colloid Interface Sci ; 651: 769-784, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37336654

RESUMO

The air/liquid interface is a superior platform to create nanosheets of materials by promoting spontaneous two-dimensional growth of components. Metal-organic frameworks (MOFs)-intrinsically porous crystals-with π-conjugated triphenylene-based ligands show high electrical conductivities. Forming nanosheets of such conductive MOFs should enable their use in electronic devices. Although highly conductive MOF nanosheets have been created at the air/liquid interface, direct control of their continuity, morphology, thickness, crystallinity, and orientation directly influencing device performance remains as an issue to be addressed. Here, we present detailed insights into the formation process of electrically conductive MOF nanosheets composed of 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and Ni2+ ions (HITP-Ni-NS) at the air/liquid interface. The morphological and structural features of HITP-Ni-NS strongly depend on the standing time-the time without any external actions involved, but leaving the interface undisturbed after setting the ligand solution onto the metal-ion solution. We find that the fundamental features of HITP-Ni-NS are determined by the standing time with conductivity sensitively influenced by such pre-determined HITP-Ni-NS characteristics. These findings will lead towards the establishment of a rational strategy for creating MOF nanosheets at the air/liquid interface with desired properties, thereby accelerating their use in diverse potential applications.

6.
Adv Healthc Mater ; 11(11): e2102117, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35112802

RESUMO

Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco-regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition. Here, the effect of bedaquiline-encapsulating fucosylated versus nonfucosylated liposomes on cellular uptake and delivery is investigated. Notably, this comparison includes critical parameters for pulmonary delivery, i.e., aerosol deposition and the noncellular barriers of pulmonary surfactant (PS) and mucus. Targeting increases liposomal uptake into THP-1 cells as well as peripheral blood monocyte- and lung-tissue derived macrophages. Aerosol deposition in the presence of PS, however, masks the effect of active targeting. PS alters antibiotic release that depends on the drug's hydrophobicity, while mucus reduces the mobility of nontargeted more than fucosylated liposomes. Dry-powder microparticles of spray-dried bedaquiline-loaded liposomes display a high fine particle fraction of >70%, as well as preserved liposomal integrity and targeting function. The antibiotic effect is maintained when deposited as powder aerosol on cultured Mycobacterium abscessus. When treating M. abscessus infected THP-1 cells, the fucosylated variant enabled enhanced bacterial killing, thus opening up a clear perspective for the improved treatment of nontuberculous mycobacterial infections.


Assuntos
Antibacterianos , Lipossomos , Administração por Inalação , Aerossóis , Antibacterianos/farmacologia , Inaladores de Pó Seco , Fucose , Pulmão , Macrófagos , Tamanho da Partícula , Pós
7.
J Control Release ; 329: 205-222, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33245954

RESUMO

This work explores the potential for strategizing pulmonary surfactant (PS) for drug delivery over the respiratory air-liquid interface: the interfacial delivery. The efficacy of PS- and interface-assisted drug vehiculization was determined both in vitro and in vivo using a native purified porcine PS combined with the hydrophobic anti-inflammatory drug Tacrolimus (TAC), a calcineurin inhibitor. In vitro assays were conducted in a novel double surface balance setup designed to emulate compression-expansion dynamics applied to interfacially connected drug donor and recipient compartments. In this setup, PS transported TAC efficiently over air-liquid interfaces, with compression/expansion breathing-like dynamics enhancing rapid interface-assisted diffusion and drug release. The efficacy of PS-assisted TAC vehiculization was also evaluated in vivo in a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). In anesthetized mice, TAC combined with PS was intra-nasally (i.n) instilled prior administering i.n. LPS. PS/TAC pre-treatment caused greater TAC internalization into a higher number of lung cells obtained from bronchoalveolar lavages (BAL) than TAC pre-treatment alone. Additionally, the PS/TAC combination but not TAC or PS alone attenuated the LPS-induced pro-inflammatory effects reducing cells and proteins in BAL fluid. These findings indicated that PS-mediated increase in TAC uptake blunted the pro-injurious effects of LPS, suggesting a synergistic anti-inflammatory effect of PS/drug formulations. These in vitro and in vivo results establish the potential utility of PS to open novel effective delivery strategies for inhaled drugs.


Assuntos
Preparações Farmacêuticas , Surfactantes Pulmonares , Animais , Sistemas de Liberação de Medicamentos , Camundongos , Tensoativos , Suínos , Tacrolimo
8.
ACS Appl Mater Interfaces ; 13(45): 54570-54578, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34706544

RESUMO

Although most metal-organic frameworks (MOFs)─highly porous crystalline metal complex networks with structural and functional varieties─are electrically insulating, high electrical conduction has been recently demonstrated in MOFs while retaining permanent porosity. Usability of electronically active MOFs effectively emerges when they are created in a thin-film state as required in major potential applications such as chemiresistive sensors, supercapacitors, and electrode catalysts. Thin-film morphology including crystallinity, thickness, density, roughness, and orientation sensitively influences device performance. Fine control of such morphological parameters still remains as a main issue to be addressed. Here, we report a bottom-up procedure of assembling a conductive MOF nanosheet composed of 2,3,6,7,10,11-hexaiminotriphenylene molecules and nickel ions (HITP-Ni-NS). Creation of HITP-Ni-NS is achieved by applying air/liquid (A/L) interfacial bottom-up synthesis. HITP-Ni-NS has a multilayered structure with 14 nm thickness and is endowed with high crystallinity and uniaxial orientation, demonstrated by synchrotron X-ray crystallography. Facile transferability of HITP-Ni-NS assembled at air/liquid interfaces to any desired substrate enables us to measure its electrical conductivity, recorded as 0.6 S cm-1─highest among those of triphenylene-based MOF nanosheets with a thickness lower than 100 nm.

9.
Adv Healthc Mater ; 10(18): e2100633, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34292676

RESUMO

Respiratory toxicology remains a major research area in the 21st century since current scenario of airborne viral infection transmission and pollutant inhalation is expected to raise the annual morbidity beyond 2 million. Clinical and epidemiological research connecting human exposure to air contaminants to understand adverse pulmonary health outcomes is, therefore, an immediate subject of human health assessment. Important observations in defining systemic effects of environmental contaminants on inhalation metabolic dysfunction, liver health, and gastrointestinal tract have been well explored with in vivo models. In this review, a framework is provided, a paradigm is established about inhalation toxicity testing in vitro, and a brief overview of breathing Lungs-on-Chip (LoC) as design concepts is given. The optimized bioengineering approaches and microfluidics with their fundamental pros, and cons are presented. There are different strategies that researchers apply to inhalation toxicity studies to assess a variety of inhalable substances and relevant LoC approaches. A case study from published literature and frame arguments about reproducibility as well as in vitro/in vivo correlations are discussed. Finally, the opportunities and challenges in soft robotics, systems inhalation toxicology approach integrating bioengineering, machine learning, and artificial intelligence to address a multitude model for future toxicology are discussed.


Assuntos
Inteligência Artificial , Testes de Toxicidade , Humanos , Reprodutibilidade dos Testes
10.
ACS Appl Mater Interfaces ; 8(30): 19827-35, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27398988

RESUMO

Wet foams were produced via agitation and compressed air bubbling of aqueous solutions of carboxymethylated lignin (CML). Bubble size and distribution were assessed in situ via optical microscopy. Foamability, bubble collapse rate, and foam stability (half-life time) were analyzed as a function of CML concentration, temperature, pH, and air content. Dynamic changes of the CML liquid foam were monitored by light transmission and backscattering. Cellulosic fibers of different aspect ratios (long pine fibers and short birch fibers) were suspended under agitation by the liquid foams (0.6% CML in the aqueous phase) with an air (bubble) content as high as 75% in volume. Remarkably, the half-life time of fiber-laden CML foams was 10-fold higher than that of the corresponding fiber-free liquid foam. Such lignin-based foams were demonstrated, after dewatering, as a precursor for the synthesis of nonwoven, layered structures. The resulting fiber networks (paper), obtained here for the first time with lignin-based foams, were characterized for pore size distribution, lignin retention, morphology, and physical-mechanical properties (network formation quality, density, air permeability, surface roughness, and tensile and internal bond strengths). The results were compared against structures obtained from foams stabilized with an anionic surfactant (SDS) as well as those from foam-free, water-based web-laying. Remarkably, compared to SDS, the foam-formed materials produced with CML displayed better bonding and tensile strengths. Overall, CML-based foams were found to be suitable carriers of cellulosic fibers and have opened the possibility for integrating fully biobased systems in foam-forming. This is an emerging option to increase the effective solids content in the system without compromising the quality of formed nonwoven materials while achieving reductions in water and energy consumption.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa