Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105163, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37586589

RESUMO

Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.


Assuntos
Proteínas de Escherichia coli , Biossíntese de Proteínas , Transporte Proteico , Adaptação Psicológica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo
2.
Biochemistry (Mosc) ; 89(3): 407-416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648761

RESUMO

The synthesis of (p)ppGpp alarmones plays a vital role in the regulation of metabolism suppression, growth rate control, virulence, bacterial persistence, and biofilm formation. The (p)ppGpp alarmones are synthesized by proteins of the RelA/SpoT homolog (RSH) superfamily, including long bifunctional RSH proteins and small alarmone synthetases. Here, we investigated enzyme kinetics and dose-dependent enzyme inhibition to elucidate the mechanism of 4-(4,7-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)pentanoic acid (DMNP) action on the (p)ppGpp synthetases RelMsm and RelZ from Mycolicibacterium smegmatis and RelMtb from Mycobacterium tuberculosis. DMNP was found to inhibit the activity of RelMtb. According to the enzyme kinetics analysis, DMNP acts as a noncompetitive inhibitor of RelMsm and RelZ. Based on the results of molecular docking, the DMNP-binding site is located in the proximity of the synthetase domain active site. This study might help in the development of alarmone synthetase inhibitors, which includes relacin and its derivatives, as well as DMNP - a synthetic analog of the marine coral metabolite erogorgiaene. Unlike conventional antibiotics, alarmone synthetase inhibitors target metabolic pathways linked to the bacterial stringent response. Although these pathways are not essential for bacteria, they regulate the development of adaptation mechanisms. Combining conventional antibiotics that target actively growing cells with compounds that impede bacterial adaptation may address challenges associated with antimicrobial resistance and bacterial persistence.


Assuntos
Proteínas de Bactérias , Ligases , Mycobacterium tuberculosis , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Cinética , Ligases/antagonistas & inibidores , Ligases/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Naftalenos/farmacologia , Naftalenos/química , Diterpenos/farmacologia
3.
Angew Chem Int Ed Engl ; 61(22): e202201731, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35294098

RESUMO

Magic Spot Nucleotides (MSN) regulate the stringent response, a highly conserved bacterial stress adaptation mechanism, enabling survival under adverse external challenges. In times of antibiotic crisis, a detailed understanding of stringent response is essential, as potentially new targets for pharmacological intervention could be identified. In this study, we delineate the MSN interactome in Escherichia coli and Salmonella typhimurium applying a family of trifunctional photoaffinity capture compounds. We introduce MSN probes covering a diverse phosphorylation pattern, such as pppGpp, ppGpp, and pGpp. Our chemical proteomics approach provides datasets of putative MSN receptors both from cytosolic and membrane fractions that unveil new MSN targets. We find that the activity of the non-Nudix hydrolase ApaH is potently inhibited by pppGpp, which itself is converted to pGpp by ApaH. The capture compounds described herein will be useful to identify MSN interactomes across bacterial species.


Assuntos
Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Tetrafosfato , Nucleotídeos
4.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639007

RESUMO

Among several mechanisms involved in the plant stress response, synthesis of guanosine tetra and pentaphosphates (alarmones), homologous to the bacterial stringent response, is of crucial importance. Plant alarmones affect, among others, photosynthetic activity, metabolite accumulation, and nutrient remobilization, and thus regulate plant growth and development. The plant RSH (RelA/SpoT homolog) genes, that encode synthetases and/or hydrolases of alarmones, have been characterized in a limited number of plant species, e.g., Arabidopsis thaliana, Oryza sativa, and Ipomoea nil. Here, we used dry-to-wet laboratory research approaches to characterize RSH family genes in the polyploid plant Brassica napus. There are 12 RSH genes in the genome of rapeseed that belong to four types of RSH genes: 6 RSH1, 2 RSH2, 3 RSH3, and 1 CRSH. BnRSH genes contain 13-24 introns in RSH1, 2-6 introns in RSH2, 1-6 introns in RSH3, and 2-3 introns in the CRSH genes. In the promoter regions of the RSH genes, we showed the presence of regulatory elements of the response to light, plant hormones, plant development, and abiotic and biotic stresses. The wet-lab analysis showed that expression of BnRSH genes is generally not significantly affected by salt stress, but that the presence of PGPR bacteria, mostly of Serratia sp., increased the expression of BnRSH significantly. The obtained results show that BnRSH genes are differently affected by biotic and abiotic factors, which indicates their different functions in plants.


Assuntos
Bactérias , Brassica napus/fisiologia , Proteínas do Citoesqueleto/genética , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/genética , Salinidade , Simbiose , Brassica napus/classificação , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Sequências Reguladoras de Ácido Nucleico
5.
J Mol Evol ; 87(1): 37-51, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30604017

RESUMO

All known alarmones are ribonucleotides or ribonucleotide derivatives that are synthesized when cells are under stress conditions, triggering a stringent response that affects major processes such as replication, gene expression, and metabolism. The ample phylogenetic distribution of alarmones (e.g., cAMP, Ap(n)A, cGMP, AICAR, and ZTP) suggests that they are very ancient molecules that may have already been present in cellular systems prior to the evolutionary divergence of the Archaea, Bacteria, and Eukarya domains. Their chemical structure, wide biological distribution, and functional role in highly conserved cellular processes support the possibility that these modified nucleotides are molecular fossils of an epoch in the evolution of chemical signaling and metabolite sensing during which RNA molecules played a much more conspicuous role in biological catalysis and genetic information.


Assuntos
Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , Archaea/genética , Bactérias/genética , Bases de Dados Genéticas , Eucariotos/genética , Evolução Molecular , Nucleotídeos/metabolismo , Origem da Vida , Filogenia , RNA/metabolismo
6.
Planta ; 246(5): 817-842, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28948393

RESUMO

MAIN CONCLUSION: Plant RSH proteins are able to synthetize and/or hydrolyze unusual nucleotides called (p)ppGpp or alarmones. These molecules regulate nuclear and chloroplast transcription, chloroplast translation and plant development and stress response. Homologs of bacterial RelA/SpoT proteins, designated RSH, and products of their activity, (p)ppGpp-guanosine tetra-and pentaphosphates, have been found in algae and higher plants. (p)ppGpp were first identified in bacteria as the effectors of the stringent response, a mechanism that orchestrates pleiotropic adaptations to nutritional deprivation and various stress conditions. (p)ppGpp accumulation in bacteria decreases transcription-with exception to genes that help to withstand or overcome current stressful situations, which are upregulated-and translation as well as DNA replication and eventually reduces metabolism and growth but promotes adaptive responses. In plants, RSH are nuclei-encoded and function in chloroplasts, where alarmones are produced and decrease transcription, translation, hormone, lipid and metabolites accumulation and affect photosynthetic efficiency and eventually plant growth and development. During senescence, alarmones coordinate nutrient remobilization and relocation from vegetative tissues into seeds. Despite the high conservancy of RSH protein domains among bacteria and plants as well as the bacterial origin of plant chloroplasts, in plants, unlike in bacteria, (p)ppGpp promote chloroplast DNA replication and division. Next, (p)ppGpp may also perform their functions in cytoplasm, where they would promote plant growth inhibition. Furthermore, (p)ppGpp accumulation also affects nuclear gene expression, i.a., decreases the level of Arabidopsis defense gene transcripts, and promotes plants susceptibility towards Turnip mosaic virus. In this review, we summarize recent findings that show the importance of RSH and (p)ppGpp in plant growth and development, and open an area of research aiming to understand the function of plant RSH in response to stress.


Assuntos
Guanosina Pentafosfato/metabolismo , Ligases/metabolismo , Desenvolvimento Vegetal , Plantas/enzimologia , Adaptação Fisiológica , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cloroplastos/metabolismo , Ligases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Estresse Fisiológico
7.
Microlife ; 4: uqad016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223742

RESUMO

Dinucleoside polyphosphates, a class of nucleotides found amongst all the Trees of Life, have been gathering a lot of attention in the past decades due to their putative role as cellular alarmones. In particular, diadenosine tetraphosphate (AP4A) has been widely studied in bacteria facing various environmental challenges and has been proposed to be important for ensuring cellular survivability through harsh conditions. Here, we discuss the current understanding of AP4A synthesis and degradation, protein targets, their molecular structure where possible, and insights into the molecular mechanisms of AP4A action and its physiological consequences. Lastly, we will briefly touch on what is known with regards to AP4A beyond the bacterial kingdom, given its increasing appearance in the eukaryotic world. Altogether, the notion that AP4A is a conserved second messenger in organisms ranging from bacteria to humans and is able to signal and modulate cellular stress regulation seems promising.

8.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 10): 247-256, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728608

RESUMO

The aTfaRel2/faRel2 operon from Coprobacillus sp. D7 encodes a bicistronic type II toxin-antitoxin (TA) module. The FaRel2 toxin is a toxic small alarmone synthetase (toxSAS) that inhibits translation through the pyrophosphorylation of uncharged tRNAs at the 3'-CCA end. The toxin is neutralized by the antitoxin ATfaRel2 through the formation of an inactive TA complex. Here, the production, biophysical analysis and crystallization of ATfaRel2 and FaRel2 as well as of the ATfaRel2-FaRel2 complex are reported. ATfaRel2 is monomeric in solution. The antitoxin crystallized in space group P21212 with unit-cell parameters a = 53.3, b = 34.2, c = 37.6 Å, and the best crystal diffracted to a resolution of 1.24 Å. Crystals of FaRel2 in complex with APCPP, a nonhydrolysable ATP analogue, belonged to space group P21, with unit-cell parameters a = 31.5, b = 60.6, c = 177.2 Å, ß = 90.6°, and diffracted to 2.6 Šresolution. The ATfaRel2-FaRel2Y128F complex forms a heterotetramer in solution composed of two toxins and two antitoxins. This complex crystallized in two space groups: F4132, with unit-cell parameters a = b = c = 227.1 Å, and P212121, with unit-cell parameters a = 51.7, b = 106.2, c = 135.1 Å. The crystals diffracted to 1.98 and 2.1 Šresolution, respectively.


Assuntos
Antitoxinas , Toxinas Bacterianas , Antitoxinas/genética , Antitoxinas/química , Cristalografia por Raios X , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Raios X , Óperon , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
9.
Curr Opin Chem Biol ; 73: 102261, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36682088

RESUMO

Purine nucleotides, generated by de novo synthesis and salvage pathways, are essential for metabolism and act as building blocks of genetic material. To avoid an imbalance in the nucleotide pool, nature has devised several strategies to regulate/tune the catalytic performance of key purine metabolic enzymes. Here, we discuss some recent examples, such as stress-regulating alarmones that bind to select pathway enzymes, huge ensembles like dynamic metabolons and self-assembled filaments that highlight the layered fine-control prevalent in the purine metabolic pathway to fulfill requisite purine demands. Examples of enzymes that turn-on only under allosteric control, are regulated via long-distance communication that facilitates transient conduits have additionally been explored.


Assuntos
Redes e Vias Metabólicas , Purinas , Purinas/metabolismo
10.
Cell Rep ; 42(3): 112140, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36842086

RESUMO

Signal-sequence-dependent protein targeting is essential for the spatiotemporal organization of eukaryotic and prokaryotic cells and is facilitated by dedicated protein targeting factors such as the signal recognition particle (SRP). However, targeting signals are not exclusively contained within proteins but can also be present within mRNAs. By in vivo and in vitro assays, we show that mRNA targeting is controlled by the nucleotide content and by secondary structures within mRNAs. mRNA binding to bacterial membranes occurs independently of soluble targeting factors but is dependent on the SecYEG translocon and YidC. Importantly, membrane insertion of proteins translated from membrane-bound mRNAs occurs independently of the SRP pathway, while the latter is strictly required for proteins translated from cytosolic mRNAs. In summary, our data indicate that mRNA targeting acts in parallel to the canonical SRP-dependent protein targeting and serves as an alternative strategy for safeguarding membrane protein insertion when the SRP pathway is compromised.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Bactérias/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Transporte Proteico , Ribossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
11.
Metabolites ; 12(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36422239

RESUMO

In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.

12.
Pathogens ; 10(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34832573

RESUMO

Mycobacterium tuberculosis is a human pathogen that can thrive inside the host immune cells for several years and cause tuberculosis. This is due to the propensity of M. tuberculosis to synthesize a sturdy cell wall, shift metabolism and growth, secrete virulence factors to manipulate host immunity, and exhibit stringent response. These attributes help M. tuberculosis to manage the host response, and successfully establish and maintain an infection even under nutrient-deprived stress conditions for years. In this review, we will discuss the importance of mycobacterial stringent response under different stress conditions. The stringent response is mediated through small signaling molecules called alarmones "(pp)pGpp". The synthesis and degradation of these alarmones in mycobacteria are mediated by Rel protein, which is both (p)ppGpp synthetase and hydrolase. Rel is important for all central dogma processes-DNA replication, transcription, and translation-in addition to regulating virulence, drug resistance, and biofilm formation. Rel also plays an important role in the latent infection of M. tuberculosis. Here, we have discussed the literature on alarmones and Rel proteins in mycobacteria and highlight that (p)ppGpp-analogs and Rel inhibitors could be designed and used as antimycobacterial compounds against M. tuberculosis and non-tuberculous mycobacterial infections.

13.
Front Microbiol ; 11: 2072, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013756

RESUMO

When bacteria experience growth-limiting environmental conditions, the synthesis of the hyperphosphorylated guanosine derivatives (p)ppGpp is induced by enzymes of the RelA/SpoT homology (RSH)-type protein family. High levels of (p)ppGpp induce a process called "stringent response", a major cellular reprogramming during which ribosomal RNA (rRNA) and transfer RNA (tRNA) synthesis is downregulated, stress-related genes upregulated, messenger RNA (mRNA) stability and translation altered, and allocation of scarce resources optimized. The (p)ppGpp-mediated stringent response is thus often regarded as an all-or-nothing paradigm induced by stress. Over the past decades, several binding partners of (p)ppGpp have been uncovered displaying dissociation constants from below one micromolar to more than one millimolar and thus coincide with the accepted intracellular concentrations of (p)ppGpp under non-stringent (basal levels) and stringent conditions. This suggests that the ability of (p)ppGpp to modulate target proteins or processes would be better characterized as an unceasing continuum over a concentration range instead of being an abrupt switch of biochemical processes under specific conditions. We analyzed the reported binding affinities of (p)ppGpp targets and depicted a scheme for prioritization of modulation by (p)ppGpp. In this ranking, many enzymes of e.g., nucleotide metabolism are among the first targets to be affected by rising (p)ppGpp while more fundamental processes such as DNA replication are among the last. This preference should be part of (p)ppGpp's "magic" in the adaptation of microorganisms while still maintaining their potential for outgrowth once a stressful condition is overcome.

14.
Microbiol Res ; 227: 126309, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31421713

RESUMO

The phosphorus availability in soil ranged from <0.01 to 1 ppm and found limiting for the utilization by plants. Hence, phosphate solubilizing bacteria (PSB) proficiently fulfill the phosphorus requirement of plants in an eco-friendly manner. The PSB encounter dynamic and challenging environmental conditions viz., high temperature, osmotic, acid, and climatic changes often hamper their activity and proficiency. The modern trend is shifting from isolation of the PSB to their genetic potentials and genome annotation not only for their better performance in the field trials but also to study their ability to cope up with stresses. In order to withstand environmental stress, bacteria need to restructure its metabolic network to ensure its survival. Pi starving condition response regulator (PhoB) and the mediator of stringent stress response alarmone (p)ppGpp known to regulate the global regulatory network of bacteria to provide balanced physiology under various stress condition. The current review discusses the global regulation and crosstalk of genes involved in phosphorus homeostasis, solubilization, and various stress response to fine tune the bacterial physiology. The knowledge of these network crosstalk help bacteria to respond efficiently to the challenging environmental parameters, and their physiological plasticity lead us to develop proficient long-lasting consortia for plant growth promotion.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/metabolismo , Estresse Fisiológico , Bactérias/genética , Plasticidade Celular , Redes Reguladoras de Genes , Homeostase , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Nitrogênio , Fosfatos/metabolismo , Desenvolvimento Vegetal , Plantas , Solo , Estresse Fisiológico/genética
15.
FEBS Open Bio ; 1: 1-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23650569

RESUMO

It is known that cells under stress accumulate various dinucleoside polyphosphates, compounds suggested to function as alarmones. In plants, the phenylpropanoid pathways yield metabolites protecting these organisms against various types of stress. Observations reported in this communication link these two phenomena and provide an example of a metabolic "addressee" for an "alarm" signaled by diadenosine triphosphate (Ap3A) or diadenosine tetraphosphate (Ap4A). In response to added Ap3A or Ap4A, seedlings of Arabidopsis thaliana incubated in full nutrition medium increased both the expression of the genes for and the specific activity of phenylalanine ammonia-lyase and 4-coumarate:coenzyme A ligase, enzymes that control the beginning of the phenylpropanoid pathway. Neither adenine mononucleotides (AMP, ADP or ATP) nor adenosine evoked such effects. Reactions catalyzed in vitro by these enzymes were not affected by Ap3A or Ap4A.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa