Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Biochemistry ; 63(17): 2089-2110, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39133819

RESUMO

Berberine bridge enzyme-like oxidases are often involved in natural product biosynthesis and are seen as essential enzymes for the generation of intricate pharmacophores. These oxidases have the ability to transfer a hydride atom to the FAD cofactor, which enables complex substrate modifications and rearrangements including (intramolecular) cyclizations, carbon-carbon bond formations, and nucleophilic additions. Despite the diverse range of activities, the mechanistic details of these reactions often remain incompletely understood. In this Review, we delve into the complexity that BBE-like oxidases from bacteria, fungal, and plant origins exhibit by providing an overview of the shared catalytic features and emphasizing the different reactivities. We propose four generalized modes of action by which BBE-like oxidases enable the synthesis of natural products, ranging from the classic alcohol oxidation reactions to less common amine and amide oxidation reactions. Exploring the mechanisms utilized by nature to produce its vast array of natural products is a subject of considerable interest and can lead to the discovery of unique biochemical activities.


Assuntos
Produtos Biológicos , Oxirredutases , Produtos Biológicos/metabolismo , Produtos Biológicos/química , Oxirredutases/metabolismo , Oxirredutases/química , Flavoproteínas/metabolismo , Flavoproteínas/química , Oxirredução , Berberina/metabolismo , Berberina/química , Bactérias/enzimologia , Bactérias/metabolismo , Fungos/enzimologia , Plantas/enzimologia , Plantas/metabolismo
2.
Appl Environ Microbiol ; 90(7): e0101424, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38953370

RESUMO

Bacterial and fungal copper radical oxidases (CROs) from Auxiliary Activity Family 5 (AA5) are implicated in morphogenesis and pathogenesis. The unique catalytic properties of CROs also make these enzymes attractive biocatalysts for the transformation of small molecules and biopolymers. Despite a recent increase in the number of characterized AA5 members, especially from subfamily 2 (AA5_2), the catalytic diversity of the family as a whole remains underexplored. In the present study, phylogenetic analysis guided the selection of six AA5_2 members from diverse fungi for recombinant expression in Komagataella pfaffii (syn. Pichia pastoris) and biochemical characterization in vitro. Five of the targets displayed predominant galactose 6-oxidase activity (EC 1.1.3.9), and one was a broad-specificity aryl alcohol oxidase (EC 1.1.3.7) with maximum activity on the platform chemical 5-hydroxymethyl furfural (EC 1.1.3.47). Sequence alignment comparing previously characterized AA5_2 members to those from this study indicated various amino acid substitutions at active site positions implicated in the modulation of specificity.IMPORTANCEEnzyme discovery and characterization underpin advances in microbial biology and the application of biocatalysts in industrial processes. On one hand, oxidative processes are central to fungal saprotrophy and pathogenesis. On the other hand, controlled oxidation of small molecules and (bio)polymers valorizes these compounds and introduces versatile functional groups for further modification. The biochemical characterization of six new copper radical oxidases further illuminates the catalytic diversity of these enzymes, which will inform future biological studies and biotechnological applications.


Assuntos
Cobre , Oxirredutases , Filogenia , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases/química , Cobre/metabolismo , Saccharomycetales/genética , Saccharomycetales/enzimologia , Especificidade por Substrato , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , Galactose Oxidase/genética , Galactose Oxidase/metabolismo , Galactose Oxidase/química , Alinhamento de Sequência , Sequência de Aminoácidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Domínio Catalítico
3.
Angew Chem Int Ed Engl ; 63(30): e202405833, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-38748747

RESUMO

Nitrogen heterocycles are commonly found in bioactive natural products and drugs. However, the biocatalytic tools for nitrogen heterocycle synthesis are limited. Herein, we report the discovery of vanillyl alcohol oxidases (VAOs) as efficient biocatalysts for the one-pot synthesis of 2-aryl thiazolines from various 4-hydroxybenzaldehydes and aminothiols. The wild-type biocatalyst features a broad scope of 4-hydroxybenzaldehydes. Though the scope of aminothiols is limited, it could be improved via semi-rational protein engineering, generating a variant to produce previously inaccessible cysteine-derived bioactive 2-aryl thiazolines using the wild-type VAO. Benefiting from the derivatizable functional groups in the enzymatic products, we further chemically modified these products to expand the chemical space, offering a new chemoenzymatic strategy for the green and efficient synthesis of structurally diverse 2-aryl-thiazoline derivatives to prompt their use in drug discovery and catalysis.


Assuntos
Tiazóis , Tiazóis/química , Tiazóis/síntese química , Benzaldeídos/química , Biocatálise , Estrutura Molecular , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , Álcoois Benzílicos
4.
Appl Environ Microbiol ; 89(5): e0184422, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37154753

RESUMO

Aryl-alcohol oxidases (AAOs) are members of the glucose-methanol-choline oxidase/dehydrogenase (GMC) superfamily. These extracellular flavoproteins have been described as auxiliary enzymes in the degradation of lignin by several white-rot basidiomycetes. In this context, they oxidize fungal secondary metabolites and lignin-derived compounds using O2 as an electron acceptor, and supply H2O2 to ligninolytic peroxidases. Their substrate specificity, including mechanistic aspects of the oxidation reaction, has been characterized in Pleurotus eryngii AAO, taken as a model enzyme of this GMC superfamily. AAOs show broad reducing-substrate specificity in agreement with their role in lignin degradation, being able to oxidize both nonphenolic and phenolic aryl alcohols (and hydrated aldehydes). In the present work, the AAOs from Pleurotus ostreatus and Bjerkandera adusta were heterologously expressed in Escherichia coli, and their physicochemical properties and oxidizing abilities were compared with those of the well-known recombinant AAO from P. eryngii. In addition, electron acceptors different from O2, such as p-benzoquinone and the artificial redox dye 2,6-Dichlorophenolindophenol, were also studied. Differences in reducing-substrate specificity were found between the AAO enzymes from B. adusta and the two Pleurotus species. Moreover, the three AAOs oxidized aryl alcohols concomitantly with the reduction of p-benzoquinone, with similar or even higher efficiencies than when using their preferred oxidizing-substrate, O2. IMPORTANCE In this work, quinone reductase activity is analyzed in three AAO flavooxidases, whose preferred oxidizing-substrate is O2. The results presented, including reactions in the presence of both oxidizing substrates-benzoquinone and molecular oxygen-suggest that such aryl-alcohol dehydrogenase activity, although less important than its oxidase activity in terms of maximal turnover, may have a physiological role during fungal decay of lignocellulose by the reduction of quinones (and phenoxy radicals) from lignin degradation, preventing repolymerization. Moreover, the resulting hydroquinones would participate in redox-cycling reactions for the production of hydroxyl free radical involved in the oxidative attack of the plant cell-wall. Hydroquinones can also act as mediators for laccases and peroxidases in lignin degradation in the form of semiquinone radicals, as well as activators of lytic polysaccharide monooxygenases in the attack of crystalline cellulose. Moreover, reduction of these, and other phenoxy radicals produced by laccases and peroxidases, promotes lignin degradation by limiting repolymerization reactions. These findings expand the role of AAO in lignin biodegradation.


Assuntos
Pleurotus , Quinona Redutases , Lignina/metabolismo , Peróxido de Hidrogênio , Hidroquinonas , Oxirredutases do Álcool/metabolismo , Peroxidases/genética , Etanol , Pleurotus/metabolismo , Benzoquinonas
5.
Mikrochim Acta ; 190(5): 174, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020044

RESUMO

Nanomaterials possessing artificial, enzyme-like catalytic activity (nanozymes, NZs) have a great potential for application in research, immunological assays, biosensors, in vivo imaging, and as therapeutic agents. Despite the obvious advances in construction and understanding of functional properties of NZs, there is still no clear evidence of whether they can complement the loss of corresponding enzymatic activity in vivo. Herein, we report the first, to the best to our knowledge, example of successful substitution of natural enzyme activity by catalase-like platinum (nPt) and platinum-gold (nPtAu) nanoparticles transferred to the cells of methylotrophic yeast Ogataea polymorpha. The nPt NZs were synthesized by the chemical reduction method and used as a seed to produce the nPt(core)Au(shell) particles. The produced nPt NZs were 68.1 and 91.3 nm in size, while the hydrids were of 531.2 and 615.1 nm. Both nPt and nPtAu demonstrated catalase activity in vitro. The catalase-deficient strain Ogataea polymorpha C-105 was shown to be able to grow on methanol and a mixture of glucose and methanol in the presence although not in the absence of NZs, this correlating with the decrease in intracellular hydrogen peroxide production. The results provide the first example of complementation of the natural enzyme function by synthetic NZs, the phenomenon which can further be used in a screening for new catalase-like nanozymes and as a fruitful tool to modify living cells by nanoparticles possessing catalytic activity and to use such modified cells as sensitive elements in cell-based biosensors.


Assuntos
Metanol , Saccharomycetales , Catalase/química , Platina
6.
Prep Biochem Biotechnol ; 53(3): 331-339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35697335

RESUMO

Cholesterol oxidases (COXases) have a diverse array of applications including analysis of blood cholesterol levels, synthesis of steroids, and utilization as an insecticidal protein. The COXase gene from Janthinobacterium agaricidamnosum was cloned and expressed in Escherichia coli. The purified COXase showed an optimal temperature of 60 °C and maintained about 96 and 72% of its initial activity after 30 min at 60 and 70 °C, respectively. In addition, the purified COXase exhibited a pH optimum at 7.0 and high pH stability over the broad pH range of 3.0-12.0. The pH stability of the COXase at pH 12.0 was higher than that of highly stable COXase from Chromobacterium sp. DS-1. The COXase oxidized cholesterol and ß-cholestanol at higher rates than other 3ß-hydroxysteroids. The Km, Vmax, and kcat values for cholesterol were 156 µM, 13.7 µmol/min/mg protein, and 14.4 s-1, respectively. These results showed that this enzyme could be very useful in the clinical determination of cholesterol in serum and the production of steroidal compounds. This is the first report to characterize a COXase from the genus Janthinobacterium.


Assuntos
Proteínas de Bactérias , Colesterol Oxidase , Colesterol Oxidase/genética , Colesterol Oxidase/química , Colesterol Oxidase/metabolismo , Proteínas de Bactérias/química , Colesterol , Concentração de Íons de Hidrogênio
7.
J Biol Chem ; 297(4): 101247, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34582889

RESUMO

The zinc finger transcription factor Mxr1p regulates the transcription of genes involved in methanol, acetate, and amino acid metabolism of the industrial yeast Pichia pastoris (a.k.a. Komagataella phaffii) by binding to Mxr1p response elements in their promoters. Here, we demonstrate that Mxr1p is a key regulator of ethanol metabolism as well. Using transcriptomic analysis, we identified target genes of Mxr1p that mediate ethanol metabolism, including ALD6-1 encoding an aldehyde dehydrogenase. ALD6-1 is essential for ethanol metabolism, and the ALD6-1 promoter harbors three Mxr1p response elements to which Mxr1p binds in vitro and activates transcription in vivo. We show that a nine-amino acid transactivation domain located between amino acids 365 and 373 of Mxr1p is essential for the transactivation of ALD6-1 to facilitate ethanol metabolism. Mxr1N250, containing the N-terminal 250 amino acids of Mxr1p, localized to the nucleus of cells metabolizing ethanol dependent on basic amino acid residues present between amino acids 75 and 85. While the N-terminal 400 amino acids of Mxr1p are sufficient for the activation of target genes essential for ethanol metabolism, the region between amino acids 401 and 1155 was also required for the regulation of genes essential for methanol metabolism. Finally, we identified several novel genes whose expression is differentially regulated by Mxr1p during methanol metabolism by DNA microarray. This study demonstrates that Mxr1p is a key regulator of ethanol metabolism and provides new insights into the mechanism by which Mxr1p functions as a global regulator of multiple metabolic pathways of P. pastoris.


Assuntos
Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Saccharomycetales/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Proteínas Fúngicas/genética , Saccharomycetales/genética , Fatores de Transcrição/genética , Dedos de Zinco
8.
Yeast ; 39(8): 440-448, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35811458

RESUMO

Efficient bioconversion of methanol, which can be generated from greenhouse gases, into valuable resources contributes to achieving climate goals and developing a sustainable economy. The methylotrophic yeast Ogataea methanolica is considered to be a suitable host for efficient methanol bioconversion because it has outstanding characteristics for the better adaptive potential to a high methanol environment (i.e., greater than 5%). This capacity represents a huge potential to construct an innovative carbon-neutral production system that converts methanol into value-added chemicals under the control of strong methanol-induced promoters. In this review, we discuss what is known about the regulation of methanol metabolism and adaptation mechanisms for 5% methanol conditions in O. methanolica in detail. We also discuss about the potential to breed "super methylotrophic yeast," which has potent growth characteristics under high methanol conditions.


Assuntos
Metanol , Saccharomycetales , Regulação Fúngica da Expressão Gênica , Metanol/metabolismo , Pichia/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Leveduras/metabolismo
9.
Cell Mol Life Sci ; 78(24): 8187-8208, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34738149

RESUMO

There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.1.3.13) from the fungus Fusarium graminearum. The recent discovery of specific alcohol oxidases (EC 1.1.3.7) and aryl alcohol oxidases (EC 1.1.3.47) within AA5_2 has indicated a potentially broad substrate scope among fungal CROs. However, only relatively few AA5_2 members have been characterized to date. Guided by sequence similarity network and phylogenetic analysis, twelve AA5_2 homologs have been recombinantly produced and biochemically characterized in the present study. As defined by their predominant activities, these comprise four galactose 6-oxidases, two raffinose oxidases, four broad-specificity primary alcohol oxidases, and two non-carbohydrate alcohol oxidases. Of particular relevance to applications in biomass valorization, detailed product analysis revealed that two CROs produce the bioplastics monomer furan-2,5-dicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF). Furthermore, several CROs could desymmetrize glycerol (a by-product of the biodiesel industry) to D- or L-glyceraldehyde. This study furthers our understanding of CROs by doubling the number of characterized AA5_2 members, which may find future applications as biocatalysts in diverse processes.


Assuntos
Cobre/metabolismo , Radicais Livres/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Metaloproteínas/metabolismo , Oxirredutases/metabolismo , Filogenia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Cobre/química , Radicais Livres/química , Proteínas Fúngicas/química , Metaloproteínas/química , Oxirredução , Oxirredutases/química , Conformação Proteica , Especificidade por Substrato
10.
Mikrochim Acta ; 189(12): 474, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434477

RESUMO

The aim of the current research is to design alcohol oxidase-based amperometric biosensors (ABSs) using hybrid metallic nanoparticles as artificial peroxidases (PO) or PO-like nanozymes (NZs). A lot of metallic PO-like NZs were synthesized and tested with respect to their ability to substitute natural PO in solution and on amperometric electrode. The most effective PO mimetics were coupled with alcohol oxidase (AOX) on graphite electrodes (GEs) and characterized. Two types of modified GEs, namely, the AOX/nAuCePt/GE and the AOX/nFePtAu/GE show the highest sensitivities to ethanol (2600 A⋅M-1⋅m-2 and 1250 A⋅M-1⋅m-2, respectively), low limits of detection (1.5 µM and 2.2 µM), broad linear ranges (5 - 100 µM and 12 - 120 µM), as well as satisfactory storage stabilities. The most sensitive bioelectrode AOX/nAuCePt/GE was used as ABS for ethanol determination in real samples. The practical feasibility of the constructed ABS was demonstrated by determination of ethanol in beverages, human blood and saliva.


Assuntos
Técnicas Biossensoriais , Grafite , Humanos , Peroxidase , Etanol , Oxirredutases do Álcool , Técnicas Biossensoriais/métodos , Oxirredutases
11.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430286

RESUMO

Extensive research efforts have been devoted to describing yeast alcohol oxidase (AO) and its promoter region, which is vastly applied in studies of heterologous gene expression. However, little is known about basidiomycetous AO and its physiological role in wood degradation. This review describes several alcohol oxidases from both white and brown rot fungi, highlighting their physicochemical and kinetic properties. Moreover, the review presents a detailed analysis of available AO-encoding gene promoter regions in basidiomycetous fungi with a discussion of the manipulations of culture conditions in relation to the modification of alcohol oxidase gene expression and changes in enzyme production. The analysis of reactions catalyzed by lignin-modifying enzymes (LME) and certain lignin auxiliary enzymes (LDA) elucidated the possible involvement of alcohol oxidase in the degradation of derivatives of this polymer. Combined data on lignin degradation pathways suggest that basidiomycetous AO is important in secondary reactions during lignin decomposition by wood degrading fungi. With numerous alcoholic substrates, the enzyme is probably engaged in a variety of catalytic reactions leading to the detoxification of compounds produced in lignin degradation processes and their utilization as a carbon source by fungal mycelium.


Assuntos
Basidiomycota , Madeira , Madeira/metabolismo , Lignina/metabolismo , Oxirredutases do Álcool/metabolismo , Fungos/metabolismo
12.
Annu Rev Entomol ; 66: 45-60, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417824

RESUMO

Insect cuticular hydrocarbons (CHCs) consist of complex mixtures of straight-chain alkanes and alkenes, and methyl-branched hydrocarbons. In addition to restricting water loss through the cuticle and preventing desiccation, they have secondarily evolved to serve a variety of functions in chemical communication and play critical roles as signals mediating the life histories of insects. In this review, we describe the physical properties of CHCs that allow for both waterproofing and signaling functions, summarize their roles as inter- and intraspecific chemical signals, and discuss the influences of diet and environment on CHC profiles. We also present advances in our understanding of hydrocarbon biosynthesis. Hydrocarbons are biosynthesized in oenocytes and transported to the cuticle by lipophorin proteins. Recent work on the synthesis of fatty acids and their ultimate reductive decarbonylation to hydrocarbons has taken advantage of powerful new tools of molecular biology, including genomics and RNA interference knockdown of specific genes, to provide new insights into the biosynthesis of hydrocarbons.


Assuntos
Hidrocarbonetos/química , Insetos/química , Comunicação Animal , Animais , Hidrocarbonetos/metabolismo , Insetos/fisiologia
13.
Appl Environ Microbiol ; 87(24): e0152621, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613753

RESUMO

Copper radical alcohol oxidases (CRO-AlcOx), which have been recently discovered among fungal phytopathogens, are attractive for the production of fragrant fatty aldehydes. With the initial objective to investigate the secretion of CRO-AlcOx by natural fungal strains, we undertook time course analyses of the secretomes of three Colletotrichum species (C. graminicola, C. tabacum, and C. destructivum) using proteomics. The addition of a copper-manganese-ethanol mixture in the absence of any plant-biomass mimicking compounds to Colletotrichum cultures unexpectedly induced the secretion of up to 400 proteins, 29 to 52% of which were carbohydrate-active enzymes (CAZymes), including a wide diversity of copper-containing oxidoreductases from the auxiliary activities (AA) class (AA1, AA3, AA5, AA7, AA9, AA11, AA12, AA13, and AA16). Under these specific conditions, while a CRO-glyoxal oxidase from the AA5_1 subfamily was among the most abundantly secreted proteins, the targeted AA5_2 CRO-AlcOx were secreted at lower levels, suggesting heterologous expression as a more promising strategy for CRO-AlcOx production and utilization. C. tabacum and C. destructivum CRO-AlcOx were thus expressed in Pichia pastoris, and their preference toward both aromatic and aliphatic primary alcohols was assessed. The CRO-AlcOx from C. destructivum was further investigated in applied settings, revealing a full conversion of C6 and C8 alcohols into their corresponding fragrant aldehydes. IMPORTANCE In the context of the industrial shift toward greener processes, the biocatalytic production of aldehydes is of utmost interest owing to their importance for their use as flavor and fragrance ingredients. Copper radical alcohol oxidases (CRO-AlcOx) have the potential to become platform enzymes for the oxidation of alcohols to aldehydes. However, the secretion of CRO-AlcOx by natural fungal strains has never been explored, while the use of crude fungal secretomes is an appealing approach for industrial applications to alleviate various costs pertaining to biocatalyst production. While investigating this primary objective, the secretomics studies revealed unexpected results showing that under the oxidative stress conditions we probed, Colletotrichum species can secrete a broad diversity of copper-containing enzymes (laccases, sugar oxidoreductases, and lytic polysaccharide monooxygenases [LPMOs]) usually assigned to "plant cell wall degradation," despite the absence of any plant-biomass mimicking compound. However, in these conditions, only small amounts of CRO-AlcOx were secreted, pointing out recombinant expression as the most promising path for their biocatalytic application.


Assuntos
Colletotrichum , Cobre , Ácidos Graxos/biossíntese , Oxirredutases/metabolismo , Álcoois , Aldeídos , Colletotrichum/enzimologia , Colletotrichum/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxirredutases/genética , Secretoma
14.
Arch Biochem Biophys ; 704: 108888, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33910055

RESUMO

The enantioselective oxidation of secondary alcohols represents a valuable approach for the synthesis of optically pure compounds. Flavoprotein oxidases can catalyse such selective transformations by merely using oxygen as electron acceptor. While many flavoprotein oxidases preferably act on primary alcohols, the FAD-containing alcohol oxidase from Phanerochaete chrysosporium was found to be able to perform kinetic resolutions of several secondary alcohols. By selective oxidation of the (S)-alcohols, the (R)-alcohols were obtained in high enantiopurity. In silico docking studies were carried out in order to substantiate the observed (S)-selectivity. Several hydrophobic and aromatic residues in the substrate binding site create a cavity in which the substrates can comfortably undergo van der Waals and pi-stacking interactions. Consequently, oxidation of the secondary alcohols is restricted to one of the two enantiomers. This study has uncovered the ability of an FAD-containing alcohol oxidase, that is known for oxidizing small primary alcohols, to perform enantioselective oxidations of various secondary alcohols.


Assuntos
Oxirredutases do Álcool/química , Álcoois/química , Proteínas Fúngicas/química , Phanerochaete/enzimologia , Catálise , Oxirredução , Estereoisomerismo , Especificidade por Substrato
15.
Arch Biochem Biophys ; 700: 108766, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33485849

RESUMO

Monolignol oxidoreductases are members of the berberine bridge enzyme-like (BBE-like) protein family (pfam 08031) that oxidize monolignols to the corresponding aldehydes. They are FAD-dependent enzymes that exhibit the para-cresolmethylhydroxylase-topology, also known as vanillyl oxidase-topology. Recently, we have reported the structural and biochemical characterization of two monolignol oxidoreductases from Arabidopsis thaliana, AtBBE13 and AtBBE15. Now, we have conducted a comprehensive site directed mutagenesis study for AtBBE15, to expand our understanding of the catalytic mechanism of this enzyme class. Based on the kinetic properties of active site variants and molecular dynamics simulations, we propose a refined, structure-guided reaction mechanism for the family of monolignol oxidoreductases. Here, we propose that this reaction is facilitated stepwise by the deprotonation of the allylic alcohol and a subsequent hydride transfer from the Cα-atom of the alkoxide to the flavin. We describe an excessive hydrogen bond network that enables the catalytic mechanism of the enzyme. Within this network Tyr479 and Tyr193 act concertedly as active catalytic bases to facilitate the proton abstraction. Lys436 is indirectly involved in the deprotonation as this residue determines the position of Tyr193 via a cation-π interaction. The enzyme forms a hydrophilic cavity to accommodate the alkoxide intermediate and to stabilize the transition state from the alkoxide to the aldehyde. By means of molecular dynamics simulations, we have identified two different and distinct binding modes for the substrate in the alcohol and alkoxide state. The alcohol interacts with Tyr193 and Tyr479 while Arg292, Gln438 and Tyr193 form an alkoxide binding site to accommodate this intermediate. The pH-dependency of the activity of the active site variants revealed that the integrity of the alkoxide binding site is also crucial for the fine tuning of the pKa of Tyr193 and Tyr479. Sequence alignments showed that key residues for the mechanism are highly conserved, indicating that our proposed mechanism is not only relevant for AtBBE15 but for the majority of BBE-like proteins.


Assuntos
Álcoois/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Flavina-Adenina Dinucleotídeo/química , Oxirredutases N-Desmetilantes/química , Álcoois/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , Oxirredução , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo
16.
Appl Microbiol Biotechnol ; 105(10): 4111-4126, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33997930

RESUMO

Aryl-alcohol oxidases (AAOs) are FAD-containing enzymes that oxidize a broad range of aromatic as well as aliphatic allylic alcohols to aldehydes. Their broad substrate spectrum accompanied by the only need for molecular oxygen as cosubstrate and production of hydrogen peroxide as sole by-product makes these enzymes very promising biocatalysts. AAOs were used in the synthesis of flavors, fragrances, and other high-value-added compounds and building blocks as well as in dye decolorization and pulp biobleaching. Furthermore, AAOs offer a huge potential as efficient suppliers of hydrogen peroxide for peroxidase- and peroxygenase-catalyzed reactions. A prerequisite for application as biocatalysts at larger scale is the production of AAOs in sufficient amounts. Heterologous expression of these predominantly fungal enzymes is, however, quite challenging. This review summarizes different approaches aiming at enhancing heterologous expression of AAOs and gives an update on substrates accepted by these promising enzymes as well as potential fields of their application. KEY POINTS: • Aryl-alcohol oxidases (AAOs) supply ligninolytic peroxidases with H2O2. • AAOs accept a broad spectrum of aromatic and aliphatic allylic alcohols. • AAOs are potential biocatalysts for the production of high-value-added bio-based chemicals.


Assuntos
Oxirredutases do Álcool , Peróxido de Hidrogênio , Oxirredutases do Álcool/genética , Álcoois , Fungos/genética , Lignina , Peroxidase , Peroxidases
17.
Appl Microbiol Biotechnol ; 105(21-22): 8313-8327, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34643786

RESUMO

The development of enzymatic processes for the environmentally friendly production of 2,5-furandicarboxylic acid (FDCA), a renewable precursor for bioplastics, from 5-hydroxymethylfurfural (HMF) has gained increasing attention over the last years. Aryl-alcohol oxidases (AAOs) catalyze the oxidation of HMF to 5-formyl-2-furancarboxylic acid (FFCA) through 2,5-diformylfuran (DFF) and have thus been applied in enzymatic reaction cascades for the production of FDCA. AAOs are flavoproteins that oxidize a broad range of benzylic and aliphatic allylic primary alcohols to the corresponding aldehydes, and in some cases further to acids, while reducing molecular oxygen to hydrogen peroxide. These promising biocatalysts can also be used for the synthesis of flavors, fragrances, and chemical building blocks, but their industrial applicability suffers from low production yield in natural and heterologous hosts. Here we report on heterologous expression of a new aryl-alcohol oxidase, MaAAO, from Moesziomyces antarcticus at high yields in the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). Fed-batch fermentation of recombinant P. pastoris yielded around 750 mg of active enzyme per liter of culture. Purified MaAAO was highly stable at pH 2-9 and exhibited high thermal stability with almost 95% residual activity after 48 h at 57.5 °C. MaAAO accepts a broad range of benzylic primary alcohols, aliphatic allylic alcohols, and furan derivatives like HMF as substrates and some oxidation products thereof like piperonal or perillaldehyde serve as building blocks for pharmaceuticals or show health-promoting effects. Besides this, MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) to FFCA, which has not been shown for any other AAO so far. Combining MaAAO with an unspecific peroxygenase oxidizing HMFCA to FFCA in one pot resulted in complete conversion of HMF to FDCA within 144 h. MaAAO is thus a promising biocatalyst for the production of precursors for bioplastics and bioactive compounds. KEY POINTS: • MaAAO from M. antarcticus was expressed in P. pastoris at 750 mg/l. • MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). • Complete conversion of HMF to 2,5-furandicarboxylic acid by combining MaAAO and UPO.


Assuntos
Furaldeído , Oxirredutases do Álcool , Basidiomycota , Furanos , Oxirredução , Saccharomycetales
18.
Appl Microbiol Biotechnol ; 105(20): 7743-7755, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34545417

RESUMO

Fungal aryl-alcohol oxidases (AAOs) are attractive biocatalysts because they selectively oxidize a broad range of aromatic and aliphatic allylic primary alcohols while yielding hydrogen peroxide as the only by-product. However, their use is hampered by challenging and often unsuccessful heterologous expression. Production of PeAAO1 from Pleurotus eryngii ATCC 90787 in Pichia pastoris failed, while PeAAO2 from P. eryngii P34 with an amino acid identity of 99% was expressed at high yields. By successively introducing mutations in PeAAO1 to mimic the sequence of PeAAO2, the double mutant PeAAO1 ER with mutations K583E and Q584R was constructed, that was successfully expressed in P. pastoris. Functional expression was enhanced up to 155 U/l via further replacements D361N (variant NER) or V367A (variant AER). Fed-batch cultivation of recombinant P. pastoris yielded up to 116 mg/l of active variants. Glycosylated PeAAO1 variants demonstrated high stability and catalytic efficiencies similar to PeAAO2. Interestingly, P. pastoris expressing PeAAO1 variant ER contained roughly 13 gene copies but showed similar volumetric activity as NER and AER with one to two gene copies and four times lower mRNA levels. Additional H-bonds and salt bridges introduced by mutations K583E and Q584R might facilitate heterologous expression by enhanced protein folding.Key points• PeAAO1 not expressed in P. pastoris and PeAAO2 well-expressed in Pichia differ at 7 positions.• Expression of PeAAO1 in P. pastoris achieved through mutagenesis based on PeAAO2 sequence.• Combination of K583E and Q584R is essential for expression of PeAAO1 in P. pastoris.


Assuntos
Oxirredutases do Álcool/biossíntese , Pleurotus , Mutação , Pichia/genética , Pichia/metabolismo , Pleurotus/enzimologia , Pleurotus/genética , Proteínas Recombinantes/biossíntese , Saccharomycetales
19.
Appl Microbiol Biotechnol ; 104(21): 9205-9218, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32949280

RESUMO

The fungal secretome comprises various oxidative enzymes participating in the degradation of lignocellulosic biomass as a central step in carbon recycling. Among the secreted enzymes, aryl-alcohol oxidases (AAOs) are of interest for biotechnological applications including production of bio-based precursors for plastics, bioactive compounds, and flavors and fragrances. Aryl-alcohol oxidase 2 (PeAAO2) from the fungus Pleurotus eryngii was heterologously expressed and secreted at one of the highest yields reported so far of 315 mg/l using the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). The glycosylated PeAAO2 exhibited a high stability in a broad pH range between pH 3.0 and 9.0 and high thermal stability up to 55 °C. Substrate screening with 41 compounds revealed that PeAAO2 oxidized typical AAO substrates like p-anisyl alcohol, veratryl alcohol, and trans,trans-2,4-hexadienol with up to 8-fold higher activity than benzyl alcohol. Several compounds not yet reported as substrates for AAOs were oxidized by PeAAO2 as well. Among them, cumic alcohol and piperonyl alcohol were oxidized to cuminaldehyde and piperonal with high catalytic efficiencies of 84.1 and 600.2 mM-1 s-1, respectively. While the fragrance and flavor compound piperonal also serves as starting material for agrochemical and pharmaceutical building blocks, various positive health effects have been attributed to cuminaldehyde including anticancer, antidiabetic, and neuroprotective effects. PeAAO2 is thus a promising biocatalyst for biotechnological applications. KEY POINTS: • Aryl-alcohol oxidase PeAAO2 from P. eryngii was produced in P. pastoris at 315 mg/l. • Purified enzyme exhibited stability over a broad pH and temperature range. • Oxidation products cuminaldehyde and piperonal are of biotechnological interest. Graphical abstract.


Assuntos
Pleurotus , Oxirredutases do Álcool , Odorantes , Pichia/genética , Pleurotus/genética , Saccharomycetales
20.
Appl Microbiol Biotechnol ; 104(19): 8381-8397, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32813064

RESUMO

Double-promoter expression system (DPES) design as de novo metabolic engineering strategy enables fine-tuned and enhanced gene expression. We constructed a collection of monodirectional hybrid-architectured DPESs with engineered promoter variants PADH2-Cat8-L2 and PmAOX1 and with the naturally occurring promoter PGAP to enhance and upregulate-deregulated gene expressions in Pichia pastoris in methanol-free media. Reporter red fluorescent protein (mApple) and enhanced green fluorescent protein (eGFP) were expressed under PADH2-Cat8-L2 and PmAOX1 or PGAP, respectively, enabling the determination of the transcription period and strength of each constituent in the DPESs. We determined fluorescent protein expressions in batch cultivations on 2% (v/v) ethanol, excess glucose, and excess glycerol, and compared them with single-promoter expression systems constructed with PADH2-Cat8-L2, PmAOX1, and PGAP. The transcription- and expression-upregulation power of bifunctional DPESs was higher than that of twin DPESs (two-copy expression systems). Our findings answer long-standing questions regarding the high- (or multi-) copy clone results in the literature. Our first conclusion is that increasing identical components in the DPES architectures linearly increases the concentrations of cis-acting DNA sites and increases the demand for key transcription factors (TFs) that perturb their good coupling of supply and demand. The next is that the synthesis of some amino acids may create bottleneck(s) as rate-limiting amino acid(s) in recombinant protein synthesis. With bifunctional DPESs, each constituent upregulated the transcription and increased the expression and reduced the demand for the same TF(s) in the generation of novel regulatory circuits, due to the increased number of nonidentical cis-acting DNA sites. We tested superior DPES performances in extracellular human growth hormone (rhGH) production. Thereby, the indications related to the rate-limiting amino acids were verified. Compared with its constituents PADH2-Cat8-L2 and PmAOX1, the bifunctional DPES4 enhanced rhGH production by 1.44- and 2.02-fold, respectively. The DPES design method, with its constraint and parameters, enables the generation of promising r-protein production platforms with high impact on industrial-scale production processes and opens up new avenues for research in yeasts. KEY POINTS: • Design method with the constraint and parameters for the construction of the DPESs is presented. • Hybrid-architectured de novo DPESs are designed to enhance and fine-tune gene expression. • Bifunctional DPESs demonstrate enhanced transcription and expression. • Twin DPESs linearly increase cis-acting DNA sites and consequently increase the demand for the same TFs. • Bifunctional DPESs enable good coupling of supply and demand to bind with TFs. • Ethanol-controlled Snf1 pathway and crosstalk enable fine-tuned transcription and enhanced expression.


Assuntos
Metanol , Pichia , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Humanos , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa