Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.564
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(18): 3793-3809.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37562401

RESUMO

Hepatocytes, the major metabolic hub of the body, execute functions that are human-specific, altered in human disease, and currently thought to be regulated through endocrine and cell-autonomous mechanisms. Here, we show that key metabolic functions of human hepatocytes are controlled by non-parenchymal cells (NPCs) in their microenvironment. We developed mice bearing human hepatic tissue composed of human hepatocytes and NPCs, including human immune, endothelial, and stellate cells. Humanized livers reproduce human liver architecture, perform vital human-specific metabolic/homeostatic processes, and model human pathologies, including fibrosis and non-alcoholic fatty liver disease (NAFLD). Leveraging species mismatch and lipidomics, we demonstrate that human NPCs control metabolic functions of human hepatocytes in a paracrine manner. Mechanistically, we uncover a species-specific interaction whereby WNT2 secreted by sinusoidal endothelial cells controls cholesterol uptake and bile acid conjugation in hepatocytes through receptor FZD5. These results reveal the essential microenvironmental regulation of hepatic metabolism and its human-specific aspects.


Assuntos
Células Endoteliais , Fígado , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Células de Kupffer/metabolismo , Fígado/citologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fibrose/metabolismo
2.
Immunity ; 57(2): 303-318.e6, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309273

RESUMO

Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Anfirregulina/genética , Anfirregulina/metabolismo , Receptores ErbB/metabolismo , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Linfócitos T Reguladores/metabolismo
3.
Cell ; 175(5): 1289-1306.e20, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454647

RESUMO

Obesity is a major driver of cancer, especially hepatocellular carcinoma (HCC). The prevailing view is that non-alcoholic steatohepatitis (NASH) and fibrosis or cirrhosis are required for HCC in obesity. Here, we report that NASH and fibrosis and HCC in obesity can be dissociated. We show that the oxidative hepatic environment in obesity inactivates the STAT-1 and STAT-3 phosphatase T cell protein tyrosine phosphatase (TCPTP) and increases STAT-1 and STAT-3 signaling. TCPTP deletion in hepatocytes promoted T cell recruitment and ensuing NASH and fibrosis as well as HCC in obese C57BL/6 mice that normally do not develop NASH and fibrosis or HCC. Attenuating the enhanced STAT-1 signaling prevented T cell recruitment and NASH and fibrosis but did not prevent HCC. By contrast, correcting STAT-3 signaling prevented HCC without affecting NASH and fibrosis. TCPTP-deletion in hepatocytes also markedly accelerated HCC in mice treated with a chemical carcinogen that promotes HCC without NASH and fibrosis. Our studies reveal how obesity-associated hepatic oxidative stress can independently contribute to the pathogenesis of NASH, fibrosis, and HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/patologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Proteína Tirosina Fosfatase não Receptora Tipo 2/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Transdução de Sinais
4.
Immunity ; 53(3): 627-640.e5, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32562600

RESUMO

Kupffer cells (KCs) are liver-resident macrophages that self-renew by proliferation in the adult independently from monocytes. However, how they are maintained during non-alcoholic steatohepatitis (NASH) remains ill defined. We found that a fraction of KCs derived from Ly-6C+ monocytes during NASH, underlying impaired KC self-renewal. Monocyte-derived KCs (MoKCs) gradually seeded the KC pool as disease progressed in a response to embryo-derived KC (EmKC) death. Those MoKCs were partly immature and exhibited a pro-inflammatory status compared to EmKCs. Yet, they engrafted the KC pool for the long term as they remained following disease regression while acquiring mature EmKC markers. While KCs as a whole favored hepatic triglyceride storage during NASH, EmKCs promoted it more efficiently than MoKCs, and the latter exacerbated liver damage, highlighting functional differences among KCs with different origins. Overall, our data reveal that KC homeostasis is impaired during NASH, altering the liver response to lipids, as well as KC ontogeny.


Assuntos
Autorrenovação Celular/fisiologia , Células de Kupffer/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Proliferação de Células/fisiologia , Lipídeos/análise , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo
5.
EMBO J ; 42(8): e112304, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36825429

RESUMO

The tumor suppressor p53 is critical for tumor suppression, but the regulatory role of p53 in alcohol-induced fatty liver remains unclear. Here, we show a role for p53 in regulating ethanol metabolism via acetaldehyde dehydrogenase 2 (ALDH2), a key enzyme responsible for the oxidization of alcohol. By repressing ethanol oxidization, p53 suppresses intracellular levels of acetyl-CoA and histone acetylation, leading to the inhibition of the stearoyl-CoA desaturase-1 (SCD1) gene expression. Mechanistically, p53 directly binds to ALDH2 and prevents the formation of its active tetramer and indirectly limits the production of pyruvate that promotes the activity of ALDH2. Notably, p53-deficient mice exhibit increased lipid accumulation, which can be reversed by ALDH2 depletion. Moreover, liver-specific knockdown of SCD1 alleviates ethanol-induced hepatic steatosis caused by p53 loss. By contrast, overexpression of SCD1 in liver promotes ethanol-induced fatty liver development in wild-type mice, while it has a mild effect on p53-/- or ALDH2-/- mice. Overall, our findings reveal a previously unrecognized function of p53 in alcohol-induced fatty liver and uncover pyruvate as a natural regulator of ALDH2.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Fígado Gorduroso Alcoólico , Fígado Gorduroso , Proteína Supressora de Tumor p53 , Animais , Camundongos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/metabolismo , Fígado/metabolismo , Piruvatos/metabolismo , Piruvatos/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
FASEB J ; 38(7): e23579, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568838

RESUMO

Lifestyle interventions remain the treatment of choice for patients with obesity and metabolic complications, yet are difficult to maintain and often lead to cycles of weight loss and regain (weight cycling). Literature on weight cycling remains controversial and we therefore investigated the association between weight cycling and metabolic complications using preexistent obese mice. Ldlr-/-.Leiden mice received a high-fat diet (HFD) for 20 weeks to induce obesity. Subsequently, weight-cycled mice were switched between the healthy chow diet and HFD for four 2-week periods and compared to mice that received HFD for the total study period. Repeated weight cycling tended to decrease body weight and significantly reduced fat mass, whereas adipose tissue inflammation was similar relative to HFD controls. Weight cycling did not significantly affect blood glucose or plasma insulin levels yet significantly reduced plasma free fatty acid and alanine transaminase/aspartate transaminase levels. Hepatic macrovesicular steatosis was similar and microvesicular steatosis tended to be increased upon weight cycling. Weight cycling resulted in a robust decrease in hepatic inflammation compared to HFD controls while hepatic fibrosis and atherosclerosis development were not affected. These results argue against the postulate that repeated weight cycling leads to unfavorable metabolic effects, when compared to a continuous unhealthy lifestyle, and in fact revealed beneficial effects on hepatic inflammation, an important hallmark of non-alcoholic steatohepatitis.


Assuntos
Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Fígado/metabolismo , Camundongos Obesos , Ciclo de Peso , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
7.
Proc Natl Acad Sci U S A ; 119(51): e2212006119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508670

RESUMO

Sino-Tibetan is the second largest language family in the world. Recent linguistic and genetic studies have traced its origin to Neolithic millet farmers in the Yellow River region of China around 8,000 y ago and also suggested that initial divergence among branches of Sino-Tibetan coincided with expansion of the Neolithic Yangshao culture to the west and southwest during the sixth millennium BP. However, archaeological investigations to date have been insufficient to understand the lifeways of these migrant Proto Sino-Tibetan speakers. Here, we present the results of the interdisciplinary research on the material culture and ritual activities related to the initial southwestward migration of Yangshao populations, based on evidence from microfossil remains on ceramics at three sites in Gansu and Sichuan, regional archaeological contexts, and ethnographic accounts of modern Gyalrong Tibetans. The first Yangshao migrants may have integrated with indigenous hunter-gatherers in the NW Sichuan highlands, and adopted broad-spectrum subsistence strategies, consisting of both millet farming and foraging for local wild resources. Meanwhile, the migrants appear to have retained important ritual traditions previously established in their Yellow River homelands. They prepared qu starter with Monascus mold and rice for brewing alcoholic beverages, which may have been consumed in communal drinking festivals associated with the performance of ritual dancing. Such ritual activities, which to some extent have survived in the skorbro-zajiu ceremonies in SW China, may have then played a central role in maintaining and reinforcing cultural identities, social values, and connections with the homelands of the Proto Sino-Tibetan migrants.


Assuntos
Arqueologia , Idioma , Linguística , Agricultura , China
8.
Proc Natl Acad Sci U S A ; 119(41): e2207344119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191214

RESUMO

Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducible Acbp/Dbi knockout or a constitutive Gabrg2F77I mutation that abolishes ACBP/DBI binding to the GABAA receptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout of Atg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.


Assuntos
Inibidor da Ligação a Diazepam , Receptores de GABA-A , Animais , Camundongos , Acetaminofen , Anticorpos Monoclonais/metabolismo , Antioxidantes , Autoanticorpos/metabolismo , Autofagia , Tetracloreto de Carbono , Proteínas de Transporte/genética , Colina , Coenzima A/metabolismo , Concanavalina A/metabolismo , Diazepam , Inibidor da Ligação a Diazepam/metabolismo , Ácidos Graxos/metabolismo , Fibrose , Inflamação , Metionina
9.
Eur Heart J ; 45(26): 2294-2305, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38848133

RESUMO

Alcohol-induced cardiomyopathy (AC) is an acquired form of dilated cardiomyopathy (DCM) caused by prolonged and heavy alcohol intake in the absence of other causes. The amount of alcohol required to produce AC is generally considered as >80 g/day over 5 years, but there is still some controversy regarding this definition. This review on AC focuses on pathogenesis, which involves different mechanisms. Firstly, the direct toxic effect of ethanol promotes oxidative stress in the myocardium and activation of the renin-angiotensin system. Moreover, acetaldehyde, the best-studied metabolite of alcohol, can contribute to myocardial damage impairing actin-myosin interaction and producing mitochondrial dysfunction. Genetic factors are also involved in the pathogenesis of AC, with DCM-causing genetic variants in patients with AC, especially titin-truncating variants. These findings support a double-hit hypothesis in AC, combining genetics and environmental factors. The synergistic effect of alcohol with concomitant conditions such as hypertension or liver cirrhosis can be another contributing factor leading to AC. There are no specific cardiac signs and symptoms in AC as compared with other forms of DCM. However, natural history of AC differs from DCM and relies directly on alcohol withdrawal, as left ventricular ejection fraction recovery in abstainers is associated with an excellent prognosis. Thus, abstinence from alcohol is the most crucial step in treating AC, and specific therapies are available for this purpose. Otherwise, AC should be treated according to current guidelines of heart failure with reduced ejection fraction. Targeted therapies based on AC pathogenesis are currently being developed and could potentially improve AC treatment in the future.


Assuntos
Cardiomiopatia Alcoólica , Humanos , Cardiomiopatia Alcoólica/fisiopatologia , Cardiomiopatia Alcoólica/etiologia , Etanol/efeitos adversos , Estresse Oxidativo/fisiologia
10.
Gut ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033024

RESUMO

OBJECTIVE: Patients with alcohol-associated hepatitis (AH) have a high mortality. Alcohol exacerbates liver damage by inducing gut dysbiosis, bacterial translocation and inflammation, which is characterised by increased numbers of circulating and hepatic neutrophils. DESIGN: In this study, we performed tandem mass tag (TMT) proteomics to analyse proteins in the faeces of controls (n=19), patients with alcohol-use disorder (AUD; n=20) and AH (n=80) from a multicentre cohort (InTeam). To identify protein groups that are disproportionately represented, we conducted over-representation analysis using Reactome pathway analysis and Gene Ontology to determine the proteins with the most significant impact. A faecal biomarker and its prognostic effect were validated by ELISA in faecal samples from patients with AH (n=70), who were recruited in a second and independent multicentre cohort (AlcHepNet). RESULT: Faecal proteomic profiles were overall significantly different between controls, patients with AUD and AH (principal component analysis p=0.001, dissimilarity index calculated by the method of Bray-Curtis). Proteins that showed notable differences across all three groups and displayed a progressive increase in accordance with the severity of alcohol-associated liver disease were predominantly those located in neutrophil granules. Over-representation and Reactome analyses confirmed that differentially regulated proteins are part of granules in neutrophils and the neutrophil degranulation pathway. Myeloperoxidase (MPO), the marker protein of neutrophil granules, correlates with disease severity and predicts 60-day mortality. Using an independent validation cohort, we confirmed that faecal MPO levels can predict short-term survival at 60 days. CONCLUSIONS: We found an increased abundance of faecal proteins linked to neutrophil degranulation in patients with AH, which is predictive of short-term survival and could serve as a prognostic non-invasive marker.

11.
Gut ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777573

RESUMO

OBJECTIVE: Alcohol use in metabolic dysfunction-associated steatohepatitis (MASH) is associated with an increased risk of fibrosis and liver-related death. Here, we aimed to identify a mechanism through which repeated alcohol binges exacerbate liver injury in a high fat-cholesterol-sugar diet (MASH diet)-induced model of MASH. DESIGN: C57BL/6 mice received either chow or the MASH diet for 3 months with or without weekly alcohol binges. Neutrophil infiltration, neutrophil extracellular traps (NETs) and fibrosis were evaluated. RESULTS: We found that alcohol binges in MASH increase liver injury and fibrosis. Liver transcriptomic profiling revealed differential expression of genes involved in extracellular matrix reorganisation, neutrophil activation and inflammation compared with alcohol or the MASH diet alone. Alcohol binges specifically increased NET formation in MASH livers in mice, and NETs were also increased in human livers with MASH plus alcohol use. We discovered that cell-free NETs are sensed via Nod-like receptor protein 3 (NLRP3). Furthermore, we show that cell-free NETs in vitro induce a profibrotic phenotype in hepatic stellate cells (HSCs) and proinflammatory monocytes. In vivo, neutrophil depletion using anti-Ly6G antibody or NET disruption with deoxyribonuclease treatment abrogated monocyte and HSC activation and ameliorated liver damage and fibrosis. In vivo, inhibition of NLRP3 using MCC950 or NLRP3 deficiency attenuated NET formation, liver injury and fibrosis in MASH plus alcohol diet-fed mice (graphical abstract). CONCLUSION: Alcohol binges promote liver fibrosis via NET-induced activation of HSCs and monocytes in MASH. Our study highlights the potential of inhibition of NETs and/or NLRP3, as novel therapeutic strategies to combat the profibrotic effects of alcohol in MASH.

12.
J Lipid Res ; 65(6): 100564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762124

RESUMO

Metabolic programming underpins inflammation and liver macrophage activation in the setting of chronic liver disease. Here, we sought to identify the role of an important metabolic regulator, AMP-activated protein kinase (AMPK), specifically within myeloid cells during the progression of non-alcoholic steatohepatitis (NASH) and whether treatment with metformin, a firstline therapy for diabetes and activator of AMPK could stem disease progression. Male and female Prkaa1fl/fl/Prkaa2fl/fl (Flox) control and Flox-LysM-Cre+ (MacKO) mice were fed a low-fat control or a choline-deficient, amino acid defined 45% Kcal high-fat diet (CDAHFD) for 8 weeks, where metformin was introduced in the drinking water (50 or 250 mg/kg/day) for the last 4 weeks. Hepatic steatosis and fibrosis were dramatically increased in response to CDAHFD-feeding compared to low-fat control. While myeloid AMPK signaling had no effect on markers of hepatic steatosis or circulating markers, fibrosis as measured by total liver collagen was significantly elevated in livers from MacKO mice, independent of sex. Although treatment with 50 mg/kg/day metformin had no effect on any parameter, intervention with 250 mg/kg/day metformin completely ameliorated hepatic steatosis and fibrosis in both male and female mice. While the protective effect of metformin was associated with lower final body weight, and decreased expression of lipogenic and Col1a1 transcripts, it was independent of myeloid AMPK signaling. These results suggest that endogenous AMPK signaling in myeloid cells, both liver-resident and infiltrating, acts to restrict fibrogenesis during CDAHFD-induced NASH progression but is not the mechanism by which metformin improves markers of NASH.


Assuntos
Proteínas Quinases Ativadas por AMP , Dieta Hiperlipídica , Metformina , Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Camundongos , Dieta Hiperlipídica/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Feminino , Transdução de Sinais/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/efeitos dos fármacos , Cirrose Hepática/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/induzido quimicamente , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia
13.
Diabetologia ; 67(3): 483-493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38117293

RESUMO

AIMS/HYPOTHESIS: We aimed to determine whether the use of glucagon-like peptide-1 receptor agonists (GLP-1RA) in individuals with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus decreases the risk of new-onset adverse cardiovascular events (CVEs) and mortality rate compared with other glucose-lowering drugs in a real setting at a population level. METHODS: We conducted a population-based propensity-matched retrospective cohort study using TriNetX. The cohort comprised patients over 20 years old who were newly treated with glucose-lowering drugs between 1 January 2013 and 31 December 2021, and followed until 30 September 2022. New users of GLP-1RAs were matched based on age, demographics, comorbidities and medication use by using 1:1 propensity matching with other glucose-lowering drugs. The primary outcome was the new onset of adverse CVEs, including heart failure, composite incidence of major adverse cardiovascular events (MACE; defined as unstable angina, myocardial infarction, or coronary artery procedures or surgeries) and composite cerebrovascular events (defined as the first occurrence of stroke, transient ischaemic attack, cerebral infarction, carotid intervention or surgery), and the secondary outcome was all-cause mortality. Cox proportional hazards models were used to estimate HRs. RESULTS: The study involved 2,835,398 patients with both NAFLD and type 2 diabetes. When compared with the sodium-glucose cotransporter 2 (SGLT2) inhibitors group, the GLP-1RAs group showed no evidence of a difference in terms of new-onset heart failure (HR 0.97; 95% CI 0.93, 1.01), MACE (HR 0.95; 95% CI 0.90, 1.01) and cerebrovascular events (HR 0.99; 95% CI 0.94, 1.03). Furthermore, the two groups had no evidence of a difference in mortality rate (HR 1.06; 95% CI 0.97, 1.15). Similar results were observed across sensitivity analyses. Compared with other second- or third-line glucose-lowering medications, the GLP-1RAs demonstrated a lower rate of adverse CVEs, including heart failure (HR 0.88; 95% CI 0.85, 0.92), MACE (HR 0.89; 95% CI 0.85, 0.94), cerebrovascular events (HR 0.93; 95% CI 0.89, 0.96) and all-cause mortality rate (HR 0.70; 95% CI 0.66, 0.75). CONCLUSIONS/INTERPRETATION: In individuals with NAFLD and type 2 diabetes, GLP-1RAs are associated with lower incidences of adverse CVEs and all-cause mortality compared with metformin or other second- and third-line glucose-lowering medications. However, there was no significant difference in adverse CVEs or all-cause mortality when compared with those taking SGLT2 inhibitors.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Hepatopatia Gordurosa não Alcoólica , Humanos , Adulto Jovem , Adulto , Diabetes Mellitus Tipo 2/epidemiologia , Hipoglicemiantes/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/complicações , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Glucose , Estudos Retrospectivos , Estudos de Coortes , Resultado do Tratamento , Insuficiência Cardíaca/complicações , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
14.
J Cell Mol Med ; 28(3): e18091, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169083

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease worldwide. Cuproptosis has recently been reported as a form of cell death that appears to drive the progression of a variety of diseases. This study aimed to explore cuproptosis-related molecular clusters and construct a prediction model. The gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. The associations between molecular clusters of cuproptosis-related genes and immune cell infiltration were investigated using 50 NAFLD samples. Furthermore, cluster-specific differentially expressed genes were identified by the WGCNA algorithm. External datasets were used to verify and screen feature genes, and nomograms, calibration curves and decision curve analysis (DCA) were performed to verify the performance of the prediction model. Finally, a NAFLD-diet mouse model was constructed to further verify the predictive analysis, thus providing new insights into the prediction of NAFLD clusters and risks. The role of cuproptosis in the development of non-alcoholic fatty liver disease and immune cell infiltration was explored. Non-alcoholic fatty liver disease was divided into two cuproptosis-related molecular clusters by unsupervised clustering. Three characteristic genes (ENO3, SLC16A1 and LEPR) were selected by machine learning and external data set validation. In addition, the accuracy of the nomogram, calibration curve and decision curve analysis in predicting NAFLD clusters was also verified. Further animal and cell experiments confirmed the difference in their expression in the NAFLD mouse model and Mouse hepatocyte cell line. The present study explored the relationship between non-alcoholic fatty liver disease and cuproptosis, providing new ideas and targets for individual treatment of the disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Algoritmos , Calibragem , Morte Celular , Linhagem Celular , Modelos Animais de Doenças , Apoptose
15.
J Cell Mol Med ; 28(7): e18194, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506086

RESUMO

Non-alcoholic steatohepatitis (NASH) is a severe form of fatty liver disease. If not treated, it can lead to liver damage, cirrhosis and even liver cancer. However, advances in treatment have remained relatively slow, and there is thus an urgent need to develop appropriate treatments. Hedan tablet (HDP) is used to treat metabolic syndrome. However, scientific understanding of the therapeutic effect of HDP on NASH remains limited. We used HDP to treat a methionine/choline-deficient diet-induced model of NASH in rats to elucidate the therapeutic effects of HDP on liver injury. In addition, we used untargeted metabolomics to investigate the effects of HDP on metabolites in liver of NASH rats, and further validated its effects on inflammation and lipid metabolism following screening for potential target pathways. HDP had considerable therapeutic, anti-oxidant, and anti-inflammatory effects on NASH. HDP could also alter the hepatic metabolites changed by NASH. Moreover, HDP considerable moderated NF-κB and lipid metabolism-related pathways. The present study found that HDP had remarkable therapeutic effects in NASH rats. The therapeutic efficacy of HDP in NASH mainly associated with regulation of NF-κB and lipid metabolism-related pathways via arachidonic acid metabolism, glycine-serine-threonine metabolism, as well as steroid hormone biosynthesis.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , NF-kappa B/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
16.
Immunology ; 172(2): 295-312, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453210

RESUMO

Hyperactivation of the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway has been shown to be associated with the development of a variety of inflammatory diseases, and the discovery of an inhibitor of the cGAS-STING signalling pathway holds great promise in the therapeutic interventions. Epimedium flavonoid (EF), a major active ingredient isolated from the medicinal plant Epimedium, has been reported to have good anti-inflammatory activity, but its exact mechanism of action remains unclear. In the present study, we found that EF in mouse bone marrow-derived macrophages (BMDMs), THP-1 (Tohoku Hospital Pediatrics-1) as well as in human peripheral blood mononuclear cells (hPBMC) inhibited the activation of the cGAS-STING signalling pathway, which subsequently led to a decrease in the expression of type I interferon (IFN-ß, CXCL10 and ISG15) and pro-inflammatory cytokines (IL-6 and TNF-α). Mechanistically, EF does not affect STING oligomerization, but inhibits the formation of functional STING signalosome by attenuating the interaction of interferon regulatory factor 3 (IRF3) with STING and TANK-binding kinase 1 (TBK1). Importantly, in vivo experiments, EF has shown promising therapeutic effects on inflammatory diseases mediated by the cGAS-STING pathway, which include the agonist model induced by DMXAA stimulation, the autoimmune inflammatory disease model induced by three prime repair exonuclease 1 (Trex1) deficiency, and the non-alcoholic steatohepatitis (NASH) model induced by a pathogenic amino acid and choline deficiency diet (MCD). To summarize, our study suggests that EF is a potent potential inhibitor component of the cGAS-STING signalling pathway for the treatment of inflammatory diseases mediated by the cGAS-STING signalling pathway.


Assuntos
Epimedium , Flavonoides , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Humanos , Camundongos , Flavonoides/farmacologia , Epimedium/química , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Células THP-1 , Proteínas Serina-Treonina Quinases/metabolismo , Anti-Inflamatórios/farmacologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/efeitos dos fármacos
17.
Am J Physiol Endocrinol Metab ; 326(5): E577-E587, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381400

RESUMO

Larsucosterol, a potent endogenous epigenetic regulator, has been reported to play a significant role in lipid metabolism, inflammatory responses, and cell survival. The administration of larsucosterol has demonstrated a reduction in lipid accumulation within hepatocytes and the attenuation of inflammatory responses induced by lipopolysaccharide (LPS) and TNFα in macrophages, alleviating LPS- and acetaminophen (ATMP)-induced multiple organ injury, and decreasing mortalities in animal models. Results from phase 1 and 2 clinical trials have shown that larsucosterol has potential as a biomedicine for the treatment of acute and chronic liver diseases. Recent evidence suggests that larsucosterol is a promising candidate for treating alcohol-associated hepatitis with positive results from a phase 2a clinical trial, and for metabolic dysfunction-associated steatohepatitis (MASH) from a phase 1b clinical trial. In this review, we present a culmination of our recent research efforts spanning two decades. We summarize the discovery, physiological and pharmacological mechanisms, and clinical applications of larsucosterol. Furthermore, we elucidate the pathophysiological pathways of metabolic dysfunction-associated steatotic liver diseases (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), and acute liver injuries. A central focus of the review is the exploration of the therapeutic potential of larsucosterol in treating life-threatening conditions, including acetaminophen overdose, endotoxin shock, MASLD, MASH, hepatectomy, and alcoholic hepatitis.


Assuntos
Fígado Gorduroso , Hepatopatias , Animais , Acetaminofen , Lipopolissacarídeos , Epigênese Genética
18.
J Hepatol ; 80(5): 684-693, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342441

RESUMO

BACKGROUND & AIMS: Severe alcohol-associated hepatitis (SAH) is associated with high 90-day mortality. Glucocorticoid therapy for 28 days improves 30- but not 90-day survival. We assessed the efficacy and safety of a combination of anakinra, an IL-1 antagonist, plus zinc (A+Z) compared to prednisone using the Day-7 Lille score as a stopping rule in patients with SAH. METHODS: In this phase IIb double-blind randomized trial in adults with SAH and MELD scores of 20-35, participants were randomized to receive either daily anakinra 100 mg subcutaneously for 14 days plus daily zinc sulfate 220 mg orally for 90 days, or daily prednisone 40 mg orally for 30 days. Prednisone or prednisone placebo was stopped if Day-7 Lille score was >0.45. All study drugs were stopped for uncontrolled infection or ≥5 point increase in MELD score. The primary endpoint was overall survival at 90 days. RESULTS: Seventy-three participants were randomized to prednisone and 74 to A+Z. The trial was stopped early after a prespecified interim analysis showed prednisone was associated with higher 90-day overall survival (90% vs. 70%; hazard ratio for death = 0.34, 95% CI 0.14-0.83, p = 0.018) and transplant-free survival (88% vs. 64%; hazard ratio for transplant or death = 0.30, 95% CI 0.13-0.69, p = 0.004) than A+Z. Acute kidney injury was more frequent with A+Z (45%) than prednisone (22%) (p = 0.001), but rates of infection were similar (31% in A+Z vs. 27% in prednisone, p = 0.389). CONCLUSIONS: Participants with SAH treated with prednisone using the Day-7 Lille score as a stopping rule had significantly higher overall and transplant-free 90-day survival and lower incidence of acute kidney injury than those treated with A+Z. IMPACT AND IMPLICATIONS: There is no approved treatment for severe alcohol-associated hepatitis (SAH). In this double-blind randomized trial, patients with SAH treated with prednisone using the Lille stopping rule on Day 7 had higher 90-day overall and transplant-free survival and lower rates of acute kidney injury compared to patients treated with a combination of anakinra and zinc. The data support continued use of glucocorticoids for patients with SAH, with treatment discontinuation for those with a Lille score >0.45 on Day 7. TRIAL REGISTRATION: NCT04072822.


Assuntos
Injúria Renal Aguda , Hepatite Alcoólica , Adulto , Humanos , Prednisona/efeitos adversos , Proteína Antagonista do Receptor de Interleucina 1/efeitos adversos , Zinco/uso terapêutico , Hepatite Alcoólica/tratamento farmacológico , Método Duplo-Cego , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Resultado do Tratamento
19.
J Hepatol ; 80(3): 397-408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37977244

RESUMO

BACKGROUND & AIMS: In non-alcoholic fatty liver disease (NAFLD), monocytes infiltrate visceral adipose tissue promoting local and hepatic inflammation. However, it remains unclear what drives inflammation and how the immune landscape in adipose tissue differs across the NAFLD severity spectrum. We aimed to assess adipose tissue macrophage (ATM) heterogeneity in a NAFLD cohort. METHODS: Visceral adipose tissue macrophages from lean and obese patients, stratified by NAFLD phenotypes, underwent single-cell RNA sequencing. Adipose tissue vascular integrity and breaching was assessed on a protein level via immunohistochemistry and immunofluorescence to determine targets of interest. RESULTS: We discovered multiple ATM populations, including resident vasculature-associated macrophages (ResVAMs) and distinct metabolically active macrophages (MMacs). Using trajectory analysis, we show that ResVAMs and MMacs are replenished by a common transitional macrophage (TransMac) subtype and that, during NASH, MMacs are not effectively replenished by TransMac precursors. We postulate an accessory role for MMacs and ResVAMs in protecting the adipose tissue vascular barrier, since they both interact with endothelial cells and localize around the vasculature. However, across the NAFLD severity spectrum, alterations occur in these subsets that parallel an adipose tissue vasculature breach characterized by albumin extravasation into the perivascular tissue. CONCLUSIONS: NAFLD-related macrophage dysfunction coincides with a loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. IMPACT AND IMPLICATIONS: Our study describes for the first time the myeloid cell landscape in human visceral adipose tissue at single-cell level within a cohort of well-characterized patients with non-alcoholic fatty liver disease. We report unique non-alcoholic steatohepatitis-specific transcriptional changes within metabolically active macrophages (MMacs) and resident vasculature-associated macrophages (ResVAMs) and we demonstrate their spatial location surrounding the vasculature. These dysfunctional transcriptional macrophage states coincided with the loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. Our study provides a theoretical basis for new therapeutic strategies to be directed towards reinstating the endogenous metabolic, homeostatic and cytoprotective functions of ResVAMs and MMacs, including their role in protecting vascular integrity.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Células Endoteliais/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo
20.
J Hepatol ; 80(2): 282-292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37890720

RESUMO

BACKGROUND & AIMS: Chronic circadian dysfunction increases the risk of non-alcoholic fatty liver disease (NAFLD)-related hepatocellular carcinoma (HCC), but the underlying mechanisms and direct relevance to human HCC have not been established. In this study, we aimed to determine whether chronic circadian dysregulation can drive NAFLD-related carcinogenesis from human hepatocytes and human HCC progression. METHODS: Chronic jet lag of mice with humanized livers induces spontaneous NAFLD-related HCCs from human hepatocytes. The clinical relevance of this model was analysed by biomarker, pathological/histological, genetic, RNA sequencing, metabolomic, and integrated bioinformatic analyses. RESULTS: Circadian dysfunction induces glucose intolerance, NAFLD-associated human HCCs, and human HCC metastasis independent of diet in a humanized mouse model. The deregulated transcriptomes in necrotic-inflammatory humanized livers and HCCs bear a striking resemblance to those of human non-alcoholic steatohepatitis (NASH), cirrhosis, and HCC. Stable circadian entrainment of hosts rhythmically paces NASH and HCC transcriptomes to decrease HCC incidence and prevent HCC metastasis. Circadian disruption directly reprogrammes NASH and HCC transcriptomes to drive a rapid progression from hepatocarcinogenesis to HCC metastasis. Human hepatocyte and tumour transcripts are clearly distinguishable from mouse transcripts in non-parenchymal cells and tumour stroma, and display dynamic changes in metabolism, inflammation, angiogenesis, and oncogenic signalling in NASH, progressing to hepatocyte malignant transformation and immunosuppressive tumour stroma in HCCs. Metabolomic analysis defines specific bile acids as prognostic biomarkers that change dynamically during hepatocarcinogenesis and in response to circadian disruption at all disease stages. CONCLUSION: Chronic circadian dysfunction is independently carcinogenic to human hepatocytes. Mice with humanized livers provide a powerful preclinical model for studying the impact of the necrotic-inflammatory liver environment and neuroendocrine circadian dysfunction on hepatocarcinogenesis and anti-HCC therapy. IMPACT AND IMPLICATIONS: Human epidemiological studies have linked chronic circadian dysfunction to increased hepatocellular carcinoma (HCC) risk, but direct evidence that circadian dysfunction is a human carcinogen has not been established. Here we show that circadian dysfunction induces non-alcoholic steatohepatitis (NASH)-related carcinogenesis from human hepatocytes in a murine humanized liver model, following the same molecular and pathologic pathways observed in human patients. The gene expression signatures of humanized HCC transcriptomes from circadian-disrupted mice closely match those of human HCC with the poorest prognostic outcomes, while those from stably circadian entrained mice match those from human HCC with the best prognostic outcomes. Our studies establish a new model for defining the mechanism of NASH-related HCC and highlight the importance of circadian biology in HCC prevention and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Fígado/patologia , Modelos Animais de Doenças , Carcinogênese/metabolismo , Carcinógenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa