RESUMO
Redox-active organic compounds gather significant attention for their potential application as electrodes in alkali ion batteries, owing to the structural versatility, environmental friendliness, and cost-effectiveness. However, their practical applications of such compounds are impeded by insufficient active sites with limited capacity, dissolution in electrolytes, and sluggish kinetics. To address these issues, a naphthol group-containing triarylamine polymer, namely poly[6,6'-(phenylazanediyl)bis(naphthol)] (poly(DNap-OH)) is rationally designed and synthesized, via oxidative coupling polymerization. It is capable of endowing favorable steric structures that facilitate fast ion diffusion, excellent chemical stability in organic electrolytes, and additional redox-active sites that enable a bipolar redox reaction. By exploiting these advantages, poly(DNap-OH) cathodes demonstrate remarkable cycling stability in both lithium-ion batteries (LIBs) and potassium-ion batteries (PIBs), showcasing enhanced specific capacity and redox reaction kinetics in comparison to the conventional poly(4-methyltriphenylamine) cathodes. Overall, this work offers insights into molecular design strategies for the development of high-performance organic cathodes in alkali-ion batteries.
RESUMO
In this work, we develop a new tool to provide a diagnostic map for alkali-ion intercalation materials under galvanostatic conditions. These representations, stated in the form of capacity level diagrams, are built from hundreds of numerical simulations representing different experimental conditions, summarized in two dimensionless parameters: a kinetic parameter denominated Ξ and a finite diffusion parameter l. To lay the theoretical and methodological foundations, a general model is used here. This model can be adapted to the thermodynamic and kinetic framework of specific systems. We provide two representative examples.
RESUMO
Organic compounds are desirable for sustainable Li-ion batteries (LIBs), but the poor cycle stability and low power density limit their large-scale application. Here we report a family of organic compounds containing azo group (N=N) for reversible lithiation/delithiation. Azobenzene-4,4'-dicarboxylic acid lithium salt (ADALS) with an azo group in the center of the conjugated structure is used as a model azo compound to investigate the electrochemical behaviors and reaction mechanism of azo compounds. In LIBs, ADALS can provide a capacity of 190 mAh g-1 at 0.5 C (corresponding to current density of 95 mA g-1) and still retain 90%, 71%, and 56% of the capacity when the current density is increased to 2 C, 10 C, and 20 C, respectively. Moreover, ADALS retains 89% of initial capacity after 5,000 cycles at 20 C with a slow capacity decay rate of 0.0023% per cycle, representing one of the best performances in all organic compounds. Superior electrochemical behavior of ADALS is also observed in Na-ion batteries, demonstrating that azo compounds are universal electrode materials for alkali-ion batteries. The highly reversible redox chemistry of azo compounds to alkali ions was confirmed by density-functional theory (DFT) calculations. It provides opportunities for developing sustainable batteries.
RESUMO
The exploration of materials with reversible and stable electrochemical performance is crucial in energy storage, which can (de) intercalate all the alkali-metal ions (Li+ , Na+ , and K+ ). Although transition-metal chalcogenides are investigated continually, the design and controllable preparation of hierarchical nanostructure and subtle composite withstable properties are still great challenges. Herein, component-optimal Co0.85 Se1- x Sx nanoparticles are fabricated by in situ sulfidization of metal organic framework, which are wrapped by the S-doped graphene, constructing a hollow polyhedron framework with double carbon shells (CoSSe@C/G). Benefiting from the synergistic effect of composition regulation and architecture design by S-substitution, the electrochemical kinetic is enhanced by the boosted electrochemistry-active sites, and the volume variation is mitigated by the designed structure, resulting in the advanced alkali-ion storage performance. Thus, it delivers an outstanding reversible capacity of 636.2 mAh g-1 at 2 A g-1 after 1400 cycles for Li-ion batteries. Remarkably, satisfactory initial charge capacities of 548.1 and 532.9 mAh g-1 at 0.1 A g-1 can be obtained for Na-ion and K-ion batteries, respectively. The prominent performance combined with the theory calculation confirms that the synergistic strategy can improve the alkali-ion transportation and structure stability, providing an instructive guide for designing high-performance anode materials for universal alkali-ion storage.
RESUMO
Ultrathin core-shell V3 S4 @C nanosheets assembled into hierarchical nanotubes (V3 S4 @C NS-HNTs) are synthesized by a self-template strategy and evaluated as general anodes for alkali-ion batteries. Structural/physicochemical characterizations and DFT calculations bring insights into the intrinsic relationship between crystal structures and electrochemical mechanisms of the V3 S4 @C NS-HNTs electrode. The V3 S4 @C NS-HNTs are endowed with strong structural rigidness owing to the layered VS2 subunits and interlayer occupied V atoms, and efficient alkali-ion adsorption/diffusion thanks to the electroactive V3 S4 -C interfaces. The resulting V3 S4 @C NS-HNTs anode exhibit distinct alkali-ion-dependent charge storage mechanisms and exceptional long-durability cyclic performance in storage of K+ , benefiting from synergistic contributions of pseudocapacitive and reversible intercalation/de-intercalation behaviors superior to those of the conversion-reaction-based Li+ -/Na+ -storage counterparts.
RESUMO
Compared to lithium ions, the fast redox intercalation of large-radius sodium or potassium ions into a solid lattice in non-aqueous electrolytes is an elusive goal. Herein, by regulating the interlayer structure of stacked titania sheets through weakened layer-to-layer interactions and a robustly pillared gallery space, the two-dimensional channel between neighboring sheets was completely open to guest intercalation, allowing fast intercalation that was practically irrespective of the carrier-ion sizes. Regardless of employing regular Li or large-radius Na and K ions, the material manifested zero strain-like behavior with no significant change in both host structure and interlayer space, enabling comparable capacities for all tested ions along with excellent rate behaviors and extraordinarily long lifetimes, even with 80-µm-thick electrodes. The result highlights the importance of interlayer structural features for unlocking the electrochemical activity of a layered material.
RESUMO
Despite its high theoretical capacities, Sn4P3 anodes in alkali-ion batteries (AIBs) have been plagued by electrode damage and capacity decay during cycling, mainly rooted in the huge volume changes and irreversible phase segregation. However, few reports endeavor to ascertain whether these causes bear relevance to phase evolution upon cycling. Moreover, the phase evolution mechanism for alkali-ion intercalation remains imprecise. Herein, the structural transformations and detailed mechanisms upon various alkali-ion intercalation processes are systematically revealed, utilizing both experimental techniques and theoretical simulations. The results reveal that the energy storage of Sn4P3 occurs in a two-stage process, starting from an insertion process, followed by a transition process. As the cycle proceeds, the final delithiated/desodiated/depotassiated components gradually trap alkali ions (Li+, Na+, and K+), which is attributed to the incomplete electrochemical transition and difficulty in Sn4P3 regeneration due to the kinetic limitations in removing M (M = Li, Na, and K). Furthermore, Sn4P3 anode obeys the "shrinking core mechanism" in potassium-ion batteries (KIBs), wherein a minor fraction of Sn4P3 in the outer layer of the particles is initially involved in the potassiation/depotassiation processes, followed by a gradual participation of the inner parts until the entire particle is involved. It is worth mentioning that K-Sn alloys are not found to exist during the transition process of KIBs; instead, K-Sn-P phases are found, which makes it differ from that in lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs). These findings are expected to deepen the understanding of the reaction mechanism of Sn4P3 and enlighten the material designs for improved performance.
RESUMO
Gallium-based metallic liquids, exhibiting high theoretical capacity, are considered a promising anode material for room-temperature liquid metal alkali-ion batteries. However, electrochemical performances, especially the cyclic stability, of the liquid metal anode for alkali-ion batteries are strongly limited because of the volume expansion and unstable solid electrolyte interphase film of liquid metal. Here, the bottleneck problem is resolved by designing carbon encapsulation on gallium-indium liquid metal nanoparticles (EGaIn@C LMNPs). A superior cycling stability (644 mAh g-1 after 800 cycles at 1.0 A g-1 ) is demonstrated for lithium-ion batteries, and excellent cycle stability (87 mAh g-1 after 2500 cycles at 1.0 A g-1 ) is achieved for sodium-ion batteries by carbon encapsulation of the liquid metal anode. Morphological and phase changes of EGaIn@C LMNPs during the electrochemical reaction process are revealed by in situ transmission electron microscopy measurements in real-time. The origin for the excellent performance is uncovered, that is the EGaIn@C core-shell structure effectively suppresses the non-uniform volume expansion of LMNPs from ≈160% to 127%, improves the electrical conductivity of the LMNPs, and exhibits superior electrochemical kinetics and a self-healing phenomenon. This work paves the way for the applications of room-temperature liquid metal anodes for high-performance alkali-ion batteries.
RESUMO
Owing to their rich structural chemistry and unique electrochemical properties, vanadium-based materials, especially the low-dimensional ones, are showing promising applications in energy storage and conversion. In this invited review, low-dimensional vanadium-based materials (including 0D, 1D, and 2D nanostructures of vanadium-containing oxides, polyanions, and mixed-polyanions) and their emerging applications in advanced alkali-metal-ion batteries (e.g., Li-ion, Na-ion, and K-ion batteries) are systematically summarized. Future development trends, challenges, solutions, and perspectives are discussed and proposed. Mechanisms and new insights are also given for the development of advanced vanadium-based materials in high-performance energy storage and conversion.
RESUMO
Recently, nanostructured carbon materials, such as hollow-, yolk-, and core-shell-configuration, have attracted attention in various fields owing to their unique physical and chemical properties. Among them, yolk-shell structured carbon is considered as a noteworthy material for energy storage due to its fast electron transfer, structural robustness, and plentiful active reaction sites. However, the difficulty of the synthesis for controllable carbon yolk-shell has been raised as a limitation. In this study, novel synthesis strategy of nanostructured carbon yolk-shell microspheres that enable to control morphology and size of the yolk part is proposed for the first time. To apply in the appropriate field, cobalt compounds-carbon yolk-shell composites are applied as the anode of alkali-ion batteries and exhibit superior electrochemical performances to those of core-shell structures owing to their unique structural merits. Co3 O4 -C hollow yolk-shell as a lithium-ion battery anode exhibits a long cycling lifetime (619 mA h g-1 for 400 cycles at 2 A g-1 ) and excellent rate capability (286 mA h g-1 at 10 A g-1 ). The discharge capacities of CoSe2 -C hollow yolk-shell as sodium- and potassium-ion battery anodes at the 200th cycle are 311 mA h g-1 at 0.5 A g-1 and 268 mA h g-1 at 0.2 A g-1 , respectively.
RESUMO
The integration of multiple electron-accepting skeletons into polymeric structures is the forefront of materials research for high-energy sustainable energy storage. Herein, we report the synthesis of two novel non-conjugated polymers (NCP1 and NCP2) and a model small molecule (M1) incorporated with bio-derived 4-elecron-uptaking carbonylpyridinium redox-units for alkali-ion batteries. Compared to model small molecules, the polymers exhibited improved battery performance when applied as anode materials for Li-, Na-, and K-ion batteries (LIBs/SIBs/KIBs) owing to their high electrochemical activity and effective ability to suppress dissolution. By judicious selection of the benzothiadiazole redox-active linker, the performance of NCP2 was further enhanced, delivering the highest capacity and the best cycling stability; at mass loadings of up to 3.5 and 4.7 mg cm-2, the specific capacity remained at 215 and 150 mAh g-1 after 200 cycles, respectively. The Li+/Na+/K+ insertion/extraction mechanisms of NCP2 were elucidated based on experimental analyses. The insertion/extraction of Li+ was much faster than that of Na+ and K+. This study broadens the family of bio-derived carbonylpyridinium-based polymer materials for next-generation electrochemical energy storage applications.
RESUMO
High energy and power density alkali-ion (i.e., Li+ , Na+ , and K+ ) batteries (AIBs), especially lithium-ion batteries (LIBs), are being ubiquitously used for both large- and small-scale energy storage, and powering electric vehicles and electronics. However, the increasing LIB-triggered fires due to thermal runaways have continued to cause significant injuries and casualties as well as enormous economic losses. For this reason, to date, great efforts have been made to create reliable fire-safe AIBs through advanced materials design, thermal management, and fire safety characterization. In this review, the recent progress is highlighted in the battery design for better thermal stability and electrochemical performance, and state-of-the-art fire safety evaluation methods. The key challenges are also presented associated with the existing materials design, thermal management, and fire safety evaluation of AIBs. Future research opportunities are also proposed for the creation of next-generation fire-safe batteries to ensure their reliability in practical applications.
RESUMO
Bismuth (Bi) has been prompted many investigations into the development of next-generation energy storage systems on account of its unique physicochemical properties. Although there are still some challenges, the application of metallic Bi-based materials in the field of energy storage still has good prospects. Herein, we systematically review the application and development of metallic Bi-based anode in lithium ion batteries and beyond-lithium ion batteries. The reaction mechanism, modification methodologies and their relationship with electrochemical performance are discussed in detail. Additionally, owing to the unique physicochemical properties of Bi and Bi-based alloys, some innovative investigations of metallic Bi-based materials in alkali metal anode modification and sulfur cathodes are systematically summarized for the first time. Following the obtained insights, the main unsolved challenges and research directions are pointed out on the research trend and potential applications of the Bi-based materials in various energy storage fields in the future.
RESUMO
The polymorphic phosphorus materials such as amorphous red and black ones have been used as the anodes for alkali-ion batteries. As the research field of 2D materials is pioneered, the fibrous red and violet phosphorus begin to be investigated and predicted for various devices. Meanwhile, they are not only applied to the active materials of electrodes but also the formation of protective layers for battery application. This article briefly introduces the primary allotropes of phosphorus, their research progress, and their potential for the application of alkali-ion batteries. Next, the recent studies concerning their applications of electrodes and protective layers for alkali-ion batteries are discussed in detail. Finally, the merits and drawbacks of preparation approaches, the strategies for improvement of battery performance, and the urgent challenges as well as possible solutions for future development of alkali-ion batteries using the electrodes or protective layers made from phosphorus materials, are summarized.
RESUMO
Organic electrode materials hold unique advantages for electrochemical alkali-ion storage but cannot yet fulfill their potential. The key lies in the design of structurally stable candidates that have negligible solution solubility and can withstand thousands of cycles under operation. To this end, we demonstrate here the preparation of dimensionally stable polyimide frameworks from the two-dimensional cross-linking of tetraaminobenzene and dianhydride. The product consists of hierarchically assembled nanosheets with thin thickness and abundant porosity. Its robust molecular frameworks and advantageous nanoscale features render our polymeric material a promising cathode candidate for both sodium-ion and potassium-ion batteries. Most strikingly, an extraordinary cycle life of up to 6000 cycles at 2 A g-1 is demonstrated, outperforming most of its competitors. Theoretical simulations support the great activity of our polymeric product for the electrochemical alkali-ion storage.
RESUMO
Secondary batteries have been widespread in the daily life causing an ever-growing demand for long-cycle lifespan and high-energy alkali-ion batteries. As an essential constituent part, electrode materials with superior electrochemical properties play a vital role in the battery systems. Here, an outstanding electrode of yolk-shell ZnS@C nanorods is developed, introducing considerable void space via a self-sacrificial template method. Such carbon encapsulated nanorods moderate integral electronic conductivity, thus ensuring rapid alkali-ions/electrons transporting. Furthermore, the porous structure of these nanorods endows enough void space to mitigate volume stress caused by the insertion/extraction of alkali-ions. Due to the unique structure, these yolk-shell ZnS@C nanorods achieve superior rate performance and cycling performance (740 mAh g-1 at 1.0 A g-1 after 540 cycles) for lithium-ion batteries. As a potassium-ion batteries anode, they achieve an ultra-long lifespan delivering 211.1 mAh g-1 at 1.0 A g-1 after 5700 cycles. The kinetic analysis reveals that these ZnS@C nanorods with considerable pseudocapacitive contribution benefit the fast lithiation/delithiation. Detailed transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses indicate that such yolk-shell ZnS@C anode is a typical reversible conversion reaction mechanism accomplished by alloying processes. This rational design strategy opens a window for the development of superior energy storage materials.
RESUMO
In this study we report an affordable synthesis and preparation of an electrochemically exfoliated few-layer 2-dimensional (2D) SnS2 anode material of high cycling durability and demonstrate its performance on the example of alkali metal batteries. The metalation mechanism consists of highly unusual and previously only speculated Sn (III)-state grasped by operando Raman spectroelectrochemistry aided by symmetry analysis. The prepared 2D material flakes were characterized by high resolution transmission electron microscopy, X-ray photoelectron and Raman spectroscopies. The operando Raman spectroelectrochemistry was chosen as a dedicated tool for the investigation of alkali-metal-ion intercalation (Li, Na, K), whereby the distortion of the A1g Raman active mode (out-of-plane S-Sn-S vibration) during battery charging exhibited a substantial dependence on the electrochemically applied potential. As a result of the structural dynamics a considerable Raman red-shift of 17.6 cm-1 was observed during metalation. Linewidth changes were used to evaluate the expansion caused by metalation, which in case of sodium and potassium were found to be minimal compared to lithium. Based on the spectroscopic and electrochemical results, a mechanism for the de-/intercalation of lithium, sodium and potassium is proposed which includes alloying in few-layer 2D SnS2 materials and the generation of point-defects.
RESUMO
Fluorographites (CFx ) are ultrahigh-energy-density cathode materials for alkaline-metal primary batteries. However, they are generally not rechargeable. To elucidate the reaction mechanism of CFx cathodes, in situ transmission electron microscopy characterizations and ab initio calculations are employed. It is found that it is a two-phase mechanism upon K/Na/Li ion insertion; crystalline KF (crystalline NaF nanoparticles and amorphous LiF) is generated uniformly within the amorphous carbon matrix, retaining an unchanged volume during the discharge process. The diffusivity for K/Na/Li ion migration within the CFx is ≈2.2-2.5 × 10-12 , 3.4-5.3 × 10-12 , and 1.8-2.5 × 10-11 cm2 s-1 , respectively, which is comparable to the diffusivity of K/Na/Li ions in liquid-state cells. Encouraged by the in situ transmission electron microscopy (TEM) results, a new rechargeable all-solid-state Li/CFx battery is further designed that shows a part of the reversible specific discharge capacity at the 2nd cycle. These findings demonstrate that a solid-state electrolyte provides a different reaction process compared with a conventional liquid electrolyte, and enables CFx to be partly rechargeable in solid-state Li batteries.
RESUMO
Increasing need for the renewable energy supply accelerated the thriving studies of Li-ion batteries, whereas if the high-energy-density Li as well as alkali metals should be adopted as battery electrodes is still under fierce debate for safety concerns. Recently, a group of low-melting temperature metals and alloys that are in liquid phase at or near room-temperature are being reported for battery applications, by which the battery energy could be improved without significant dendrite issue. Besides the dendrite-free feature, liquid metals can also promise various high-energy-density battery designs on the basis of unique materials properties. In this review, the design principles for liquid metals-based batteries from mechanical, electrochemical, and thermodynamical aspects are provided. With the understanding of the theoretical basis, currently reported relevant designs are summarized and analyzed focusing on the working mechanism, effectiveness evaluation, and novel application. An overview of the state-of-the-art liquid metal battery developments and future prospects is also provided in the end as a reference for further research explorations.
RESUMO
MXene combining high metal-like conductivity, high hydrophilicity, and abundant surface functional groups has been recognized as a class of versatile two-dimensional materials for many applications. However, the aggregation of MXene nanosheets from interlayer van der Waals force and hydrogen bonds represents a major problem that severely limits their practical use. Here, we report an aerogel structure of MOFs@MXene, in which the in situ formed MOF particles can effectively prevent the accumulation of MXene, enabling a three-dimensional (3D) hierarchical porous conductive network to be composed with an ultralight feature. Subsequently, a 3D porous MXene aerogel threaded hollow CoS nanobox composite ((CoS NP@NHC)@MXene) derived from the MOFs@MXene aerogel precursor was synthesized, and the highly interconnected MXene network and hierarchical porous structure coupled with the ultrafine nanocrystallization of the electrochemically active phase of CoS yield the hybrid system with excellent electron and ion transport properties. Benefiting from the synergistic effect of the components, the (CoS NP@NHC)@MXene composite manifests outstanding electrochemistry properties as electrode materials for all of the lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs). It demonstrated the excellent cycle stability and high capacities of 1145.9 mAh g-1 at 1 A g-1 after 800 cycles and 574.1 mAh g-1 at 5 A g-1 after 1000 cycles for LIBs, 420 mAh g-1 at 2 A g-1 after 650 cycles for SIBs, and 210 mAh g-1 at 2 A g-1 after 500 cycles for PIBs. First-principle calculations confirmed that the (CoS NP@NHC)@MXene hybrid could enhance the charge transfer reaction kinetics, particularly at the interface. More importantly, the excellent rate performance under high mass loading and the high volumetric energy and power density of the entire electrode represent the potential of (CoS NP@NHC)@MXene composites for applications to practical electrochemical energy storage devices. The synthesis method reported in this Article is versatile and can be easily extended to produce other porous MXene-aerogel-based materials for various applications.