Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(12): e202303533, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38070175

RESUMO

Bis(carbazolide) complexes M[3,6-tBu2 -1,8-(RC≡C)2 Carb]2 (THF)n (R=SiMe3 , n=0, M=Ca, Yb; R=Ph, n=1, M=Ca, Yb; n=0, M=Yb) were synthesized through transamination reaction of M[N(SiMe3 )2 ]2 (THF)2 with two molar equivalents of carbazoles. The complexes feature M(η2 -C≡C)4 structural motif composed of M(II) ions encapsulated by four acetylene fragments due to atypical for alkaline- and rare-earth metals η2 -interactions with triple C≡C bond. This interaction is evidenced experimentally by X-ray diffraction, Raman spectroscopy in the solid state and by NMR-spectroscopy in the solution. According to QTAIM analysis there are 4 bond critical points (3;-1) between the metal atom and each of the triple bonds, which are connected by a strongly curved, almost T-shaped bond pathway.

2.
Chemistry ; 30(53): e202402364, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-38985739

RESUMO

Controlling and understanding charge state and metal coordination in carbon nanomaterials is crucial to harnessing their unique properties. Here we describe the synthesis of the well-defined fulleride complex [{(Mesnacnac)Mg}6C70], 2, (Mesnacnac)=HC(MeCNMes)2, Mes=2,4,6-Me3C6H2, from the reaction of the ß-diketiminate magnesium(I) complex [{(Mesnacnac)Mg}2] with C70 in aromatic solvents. The molecular structure of complex 2 was determined, providing the first high-quality structural study of a complex with the C70 6- ion. In combination with solution state NMR spectroscopic and DFT computational studies, the changes in geometry and charge distribution in the various atom and bond types of the fulleride unit were investigated. Additionally, the influence of the (Mesnacnac)Mg+ cations on the global and local fulleride coordination environment was examined.

3.
Angew Chem Int Ed Engl ; 63(20): e202319449, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436590

RESUMO

Birch reduction and similar dissolved metal-type transformations hold significant importance in the organic synthesis toolbox. Historically, the field has been dominated by alkali metal reductants. In this study, we report that largely neglected, low-reactive alkaline earth metals can become powerful and affordable reductants when used in a ball mill under essentially solvent-free conditions, in the presence of ethylenediamine and THF as liquid additives. Calcium can reduce both electron-deficient and electron-rich arenes, with yields of products similar to those obtained with lithium metal. Magnesium reveals enhanced reducing power, enabling the reduction of benzoic acids while keeping electron-rich aromatic moieties intact and allows for chemoselective transformations. The developed mechanochemical approach uses readily available and safer-to-handle metals, operates under air and ambient temperature conditions, and can be used for gram-scale preparations. Finally, we demonstrate that the developed conditions can be used for other dissolved metal-type reductive transformations, including reductive amination, deoxygenation, dehalogenation, alkene and alkyne reductions.

4.
Chemistry ; 29(23): e202300035, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36734181

RESUMO

Magnesium and calcium are too inert to deprotonate amines directly. For the synthesis of bulky amides alternative strategies are required and in the past, N-bound trialkylsilyl groups have been used to ease metalation reactions. The in situ Grignard reagent formation in stirred suspensions of magnesium or calcium with hydryl halide and imine in THF allows the synthesis of a plethora of amides with bulky silyl-free substituents. Ball milling protocols partially favor competitive side reactions such as aza-pinacol coupling reactions. Calcium is the advantageous choice for the in situ Grignard reagent formation and subsequent addition onto the imines yielding bulky calcium bis(amides) whereas the stronger reducing heavier alkaline-earth metals strontium and barium are less selective and hence, the aza-pinacol coupling reaction becomes competitive. Exemplary, the solid-state molecular structures of [(Et2 O)Mg(N(Ph)(CHPh2 )2 ] and [(Et2 O)2 Ca(N(Ph)(CHPh2 )2 ] have been determined.

5.
Chemistry ; 29(11): e202203501, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36546826

RESUMO

Transparent, dark orange Ba[Au(N3 )4 ]2 ⋅ 4 H2 O was synthesized by reaction of Ba(N3 )2 and AuCl3 or HAuCl4 in aqueous solution. The novel barium tetraazidoaurate(III) tetrahydrate crystallizes in the monoclinic space group Cc (no. 9) with a=1813.68(17) pm, b=1737.95(11) pm, c=682.04(8) pm and ß=108.849(4)°. The predominant structural features of Ba[Au(N3 )4 ]2 ⋅ 4 H2 O are two crystallographically independent discrete anions [Au(N3 )4 ]- with gold in a tetragonal planar coordination by nitrogen. Vibrational spectra show good agreement with those of other azidoaurates(III). Upon drying, this salt was shown to be a highly explosive material.

6.
Ecotoxicol Environ Saf ; 262: 115184, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37379667

RESUMO

Fish and marine mammals constitute a significant part of the country food diet of many Indigenous communities in Canada. These animals sometimes accumulate essential elements as well as elevated levels of toxic metals. We experimentally assessed how changes in cooking temperature (23-99 °C by boiling) modified elemental concentrations in whitefish muscle and grey seal liver (two organs commonly consumed in some northern communities). Wet and dry elemental concentrations changed linearly as a function of temperature, and two patterns were observed: methylmercury, selenium, and rare earth elements tended to remain associated with the food during cooking, whereas alkali, alkaline-earth metals, and arsenic were significantly transferred to cooking juices. Mass balances indicated that speciation of mercury was stable during cooking. Because elements generally behaved similarly as those of their periodic table group or their ecotoxicological classes (A, B, intermediate), we propose that elemental behavior during cooking is partly a function of chemical affinity, and this relationship can be used to predict the behavior of data-poor elements of emerging concern, such as technology-critical elements. Furthermore, the marked increases and decreases in elemental concentrations during cooking (e.g., -14% As and +39% Se in whitefish; -22% Cd and +55% Hg in seal liver, on a wet weight basis) should be considered when assessing risk because current exposure models usually only consider elemental concentrations in raw food.

7.
Molecules ; 28(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630374

RESUMO

The energy band structure, density of states, and optical properties of monolayers of MoS2 doped with alkaline earth metals (Be/Mg/Ca/Sr/Ba) are systematically studied based on first principles. The results indicate that all the doped systems have a great potential to be formed and structurally stable. In comparison to monolayer MoS2, doping alkaline earth metals results in lattice distortions in the doped system. Therefore, the recombination of photogenerated hole-electron pairs is suppressed effectively. Simultaneously, the introduction of dopants reduces the band gap of the systems while creating impurity levels. Hence, the likelihood of electron transfer from the valence to the conduction band is enhanced, which means a reduction in the energy required for such a transfer. Moreover, doping monolayer MoS2 with alkaline earth metals increases the static dielectric constant and enhances its polarizability. Notably, the Sr-MoS2 system exhibits the highest value of static permittivity, demonstrating the strongest polarization capability. The doped systems exhibit a red-shifted absorption spectrum in the low-energy region. Consequently, the Be/Mg/Ca-MoS2 systems demonstrate superior visible absorption properties and a favorable band gap, indicating their potential as photo-catalysts for water splitting.

8.
Molecules ; 28(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36615572

RESUMO

Density functional theory calculations have been performed to study the effect of replacing lead by alkaline earth metals on the stability, electronic and optical properties of the formamidinium lead triiodide (FAPbI3) (111) and (100) surfaces with different terminations in the form of FAPb1-xAExI3 structures, where AE is Be, Mg or Ca. It is revealed that the (111) surface is more stable, indicating metallic characteristics. The (100) surfaces exhibit a suitable bandgap of around 1.309 and 1.623 eV for PbI5 and PbI6 terminations, respectively. Increases in the bandgaps as a result of Mg- and Ca-doping of the (100) surface were particularly noted in FAPb0.96Ca0.04I3 and FAPb0.8Ca0.2I3 with bandgaps of 1.459 and 1.468 eV, respectively. In the presence of Be, the band gap reduces critically by about 0.315 eV in the FAPb0.95Be0.05I3 structure, while increasing by 0.096 eV in FAPb0.96Be0.04I3. Optimal absorption, high extinction coefficient and light harvesting efficiency were achieved for plain and doped (100) surfaces in the visible and near UV regions. In order to improve the optical properties of the (111)-PbI3 surface in initial visible areas, we suggest calcium-doping in this surface to produce FAPb0.96Ca0.04I3, FAPb0.92Ca0.08I3, and FAPb0.88Ca0.12I3 structures.

9.
J Environ Sci (China) ; 125: 82-94, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375963

RESUMO

The performance of catalysts used in after-treatment systems is the key factor for the removal of diesel soot, which is an important component of atmospheric fine particle emissions. Herein, three-dimensionally ordered macroporous-mesoporous TixSi1-xO2 (3DOM-m TixSi1-xO2) and its supported MnOx catalysts doped with different alkali/alkaline-earth metals (AMnOx/3DOM-m Ti0.7Si0.3O2 (A: Li, Na, K, Ru, Cs, Mg, Ca, Sr, Ba)) were prepared by mesoporous template (P123)-assisted colloidal crystal template (CCT) and incipient wetness impregnation methods, respectively. Physicochemical characterizations of the catalysts were performed using scanning electron microscopy, X-ray diffraction, N2 adsorption-desorption, H2 temperature-programmed reduction, O2 temperature-programmed desorption, NO temperature-programmed oxidation, and Raman spectroscopy techniques; then, we evaluated their catalytic performances for the removal of diesel soot particles. The results show that the 3DOM-m Ti0.7Si0.3O2 supports exhibited a well-defined 3DOM-m nanostructure, and AMnOx nanoparticles with 10-50 nm were evenly dispersed on the inner walls of the uniform macropores. In addition, the as-prepared catalysts exhibited good catalytic performance for soot combustion. Among the prepared catalysts, CsMnOx/3DOM-m Ti0.7Si0.3O2 had the highest catalytic activity for soot combustion, with T10, T50, and T90 (the temperatures corresponding to soot conversion rates of 10%, 50%, and 90%) values of 285, 355, and 393°C, respectively. The high catalytic activity of the CsMnOx/3DOM-m Ti0.7Si0.3O2 catalysts was attributed to their excellent low-temperature reducibility and homogeneous macroporous-mesoporous structure, as well as to the synergistic effects between Cs and Mn species and between CsMnOx and the Ti0.7Si0.3O2 support.

10.
Molecules ; 27(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36431763

RESUMO

This work analyzes the catalytic effects induced by alkali and alkaline earth metals (AAEMs) on pyrolysis kinetics. To this end, thermogravimetric analyses (TGA) were carried out with raw beech wood and samples impregnated with NaCl, KCl and MgCl2 at four heating rates (5, 10, 15 and 30 °C/min). Obtained results showed that AAEM compounds promote the decomposition of biomass by reducing the initial and peak pyrolysis temperatures. More specifically, the catalytic effect of the alkaline earth metal was shown to be stronger than that of alkali metals. To further interpret the obtained trends, a kinetic modeling of measured data was realized using two isoconversional methods (the Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS) models). With a view to identifying a suitable reaction model, model fitting and master plot methods were considered to be coupled with the isoconversional modeling approaches. The 3-D diffusion reaction model has been identified as being well suited to properly simulate the evolution of the conversion degree of each sample as a function of the temperature. Furthermore, the kinetic parameters derived from the present modeling work highlighted significant decreases of the activation energies when impregnating wood with AAEM chlorides, thus corroborating the existence of catalytic effects shifting the decomposition process to lower temperatures. A survey of the speculated pathways allowing to account for the impact of AAEMs on the thermal degradation of woody biomass is eventually proposed to better interpret the trends identified in this work.


Assuntos
Pirólise , Madeira , Cinética , Biomassa , Termogravimetria , Catálise
11.
Chemistry ; 27(46): 11966-11982, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34121256

RESUMO

Barium complexes ligated by bulky boryloxides [OBR2 ]- (where R=CH(SiMe3 )2 , 2,4,6-i Pr3 -C6 H2 or 2,4,6-(CF3 )3 -C6 H2 ), siloxide [OSi(SiMe3 )3 ]- , and/or phenoxide [O-2,6-Ph2 -C6 H3 ]- , have been prepared. A diversity of coordination patterns is observed in the solid state for both homoleptic and heteroleptic complexes, with coordination numbers ranging between 2 and 4. The identity of the bridging ligand in heteroleptic dimers [Ba(µ2 -X1 )(X2 )]2 depends largely on the given pair of ligands X1 and X2 . Experimentally, the propensity to fill the bridging position increases according to [OB{CH(SiMe3 )2 }2 )]- <[N(SiMe3 )2 ]- <[OSi(SiMe3 )3 ]- <[O(2,6-Ph2 -C6 H3 )]- <[OB(2,4,6-i Pr3 -C6 H2 )2 ]- . This trend is the overall expression of 3 properties: steric constraints, electronic density and σ- and π-donating capability of the negatively charged atom, and ability to generate Ba ⋅ ⋅ ⋅ F, Ba ⋅ ⋅ ⋅ C(π) or Ba ⋅ ⋅ ⋅ H-C secondary interactions. The comparison of the structural motifs in the complexes [Ae{µ2 -N(SiMe3 )2 }(OB{CH(SiMe3 )2 }2 )]2 (Ae = Mg, Ca, Sr and Ba) suggest that these observations may be extended to all alkaline earths. DFT calculations highlight the largely prevailing ionic character of ligand-Ae bonding in all compounds. The ionic character of the Ae-ligand bond encourages bridging coordination, whereas the number of bridging ligands is controlled by steric factors. DFT computations also indicate that in [Ba(µ2 -X1 )(X2 )]2 heteroleptic dimers, ligand predilection for bridging vs. terminal positions is dictated by the ability to establish secondary interactions between the metals and the ligands.

12.
Chemistry ; 27(37): 9605-9619, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-33871899

RESUMO

Photoresponsive materials are a key part of the age of smart technology that have potential in a broad range of applications. Coordination networks (CNs) are widely used due to their designability and stability. In this work, three novel alkaline earth metal coordination networks (AEM-CNs): [Mg(CMNDI)(H2 O)2 ], [Ca(CMNDI)(H2 O)2 ]⋅H2 O, and [Sr(CMNDI)(H2 O)(DMF)] with fsl, cds, and scn topology nets were synthetized via N,N'-bis(carboxymethyl)-1,4,5,8-naphthalenediimide (H2 CMNDI); the scn net is not found in the Reticular Chemistry Structure Resource or ToposPro. The reusable and sensitive photochromic properties of the three CNs enable them to be used as secret inks or ultraviolet detectors. In addition, the CNs also exhibited reusable photoluminescent turn-off toward the drug molecules, balsalazide disodium (Bal.) and colchicine (Col.), with good limits of detection of 0.16 and 0.70 µM. To the best of our knowledge, this is the first study of a fluorescence sensor for Bal. Thus, the AEM-CNs provide a design idea for integrated photoresponsive materials that could be further improved in the near future by further study.


Assuntos
Metais Alcalinoterrosos
13.
Chemistry ; 27(50): 12857-12865, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165229

RESUMO

Divalent lanthanide and alkaline-earth complexes supported by N-heterocyclic carbene (NHC) ligands have been accessed by redox-transmetalation between air-stable NHC-AgI complexes and the corresponding metals. By using the small ligand 1,3-dimethylimidazol-2-ylidene (IMe), two series of isostructural complexes were obtained: the tetra-NHC complexes [LnI2 (IMe)4 ] (Ln=Eu and Sm) and the bis-NHC complexes [MI2 (IMe)2 (THF)2 ] (M=Yb, Ca and Sr). In the former, distortions in the NHC coordination were found to originate from intermolecular repulsions in the solid state. Application of the redox-transmetalation strategy with the bulkier 1,3-dimesitylimidazol-2-ylidene (IMes) ligand yielded [SrI2 (IMes)(THF)3 ], while using a similar procedure with Ca metal led to [CaI2 (THF)4 ] and uncoordinated IMes. DFT calculations were performed to rationalise the selective formation of the bis-NHC adduct in [SrI2 (IMe)2 (THF)2 ] and the tetra-NHC adduct in [SmI2 (IMe)4 ]. Since the results in the gas phase point towards preferential formation of the tetra-NHC complexes for both metal centres, the differences between both arrangements are a result of solid-state effects such as slightly different packing forces.

14.
Chemistry ; 27(56): 14128-14137, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34403183

RESUMO

A series of molecular group 2 polyphosphides has been synthesized by using air-stable [Cp*Fe(η5 -P5 )] (Cp*=C5 Me5 ) or white phosphorus as polyphosphorus precursors. Different types of group 2 reagents such as organo-magnesium, mono-valent magnesium, and molecular calcium hydride complexes have been investigated to activate these polyphosphorus sources. The organo-magnesium complex [(Dipp BDI-Mg(CH3 ))2 ] (Dipp BDI={[2,6-i Pr2 C6 H3 NCMe]2 CH}- ) reacts with [Cp*Fe(η5 -P5 )] to give an unprecedented Mg/Fe-supramolecular wheel. Kinetically controlled activation of [Cp*Fe(η5 -P5 )] by different mono-valent magnesium complexes allowed the isolation of Mg-coordinated formally mono- and di-reduced products of [Cp*Fe(η5 -P5 )]. To obtain the first examples of molecular calcium-polyphosphides, a molecular calcium hydride complex was used to reduce the aromatic cyclo-P5 ring of [Cp*Fe(η5 -P5 )]. The Ca-Fe-polyphosphide is also characterized by quantum chemical calculations and compared with the corresponding Mg complex. Moreover, a calcium coordinated Zintl ion (P7 )3- was obtained by molecular calcium hydride mediated P4 reduction.

15.
Chemistry ; 27(45): 11643-11648, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34089282

RESUMO

Butadiene (BD) is a critical raw material in chemical industry, which is conventionally produced from naphtha cracking. The fast-growing demand of BD and the limited oil reserve motivate chemists to develop alternative methods for BD production. Shale gas, which mainly consists of light alkanes, has been considered as cheap raw materials to replace oil for BD production via n-butane direct dehydrogenation (n-BDH). However, the quest for highly-efficient catalysts for n-BDH is driven by the current drawback of low BD selectivity. Here, we demonstrate a strategy for boosting the selectivity of BD by suppressing dehydroisomerization, an inevitable step in the conventional n-BDH process which largely reduces the selectivity of BD. Detailed investigations show that the addition of alkali-earth metals (e. g., Mg and Ca) into Pt-Ga2 O3 /S10 catalysts increases Pt dispersity, suppresses coke deposition and dehydroisomerization, and thus leads to the significant increase of BD selectivity. The optimized catalyst displays an initial BD selectivity of 34.7 % at a n-butane conversion of 82.1 % at 625 °C, which outperforms the reported catalysts in literatures. This work not only provides efficient catalysts for BD production via n-BDH, but also promotes the researches on catalyst design in heterogeneous catalysis.

16.
J Environ Sci (China) ; 99: 119-129, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183689

RESUMO

Activated carbon (AC) has been widely used in the removal of SO2 from flue gas owing to its well-developed pore structure and abundant functional groups. Herein, the effect of alkali/alkaline earth metals on sulfur migration was investigated based on the dynamic adsorption and temperature programmed desorption experiment. The adsorption and desorption properties of six types of AC (three commercial and three laboratory-made) were carried out on a fixed-bed experimental device, and the physical and chemical properties of samples were determined by X-ray fluorescence, X-ray diffraction, scanning electron microscopy/energy dispersive X-ray, and X-ray photoelectron spectroscopy analysis. The experimental results showed that the adsorbed SO2 cannot be completely desorbed by increasing the regeneration temperature (350 - 850°C), while the SO2 fixed in the AC combines with the Ca-based minerals in the ash to form a stable sulfate. For different samples, higher ash content, higher CaO content in the ash and a more developed pore structure lead to a higher SO2 fixation rate. Moreover, the multiple adsorption-desorption cycles experiment showed that the effect of SO2 fixation is mainly reflected in the first cycle, after which the adsorption and desorption amount are approximately the same. This study elucidates the effect of alkali/alkaline earth metals on the adsorption-desorption cycle of AC, which provides a deeper understanding of sulfur migration in the AC flue gas desulfurization process.


Assuntos
Carvão Vegetal , Dióxido de Enxofre , Adsorção , Álcalis , Metais Alcalinoterrosos , Enxofre
17.
Angew Chem Int Ed Engl ; 60(45): 24131-24136, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34302424

RESUMO

Large band gap and strong nonlinear optical (NLO) effect are two valuable but contradictory parameters, which are difficult to balance in one infrared (IR) NLO material. Herein, the first alkali and alkaline-earth metal diamond-like (DL) IR NLO material Li4 MgGe2 S7 , presenting a honeycomb-like 3D framework constructed by 6-membered LiS4 rings and GeMgS6 zigzag chains, was rationally designed and synthesized. The introduction of rigid alkali metal and alkaline-earth metal LiS4 and MgS4 tetrahedra effectively broadens the band gap of DL compound to 4.12 eV (the largest one in the reported quaternary metal chalcogenides), generating a high laser damage threshold of 7 × AgGaS2 at 1064 nm. Furthermore, Li4 MgGe2 S7 displays a suitable SHG response (0.7 × AgGaS2 ) with a type I phase-matching behavior. The results indicate that Li4 MgGe2 S7 is a promising IR NLO material for the high-power laser application and it provides an insight into the design of new DL compound with outstanding IR NLO performances.

18.
Angew Chem Int Ed Engl ; 60(8): 4252-4258, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33180975

RESUMO

Ba metal was activated by evaporation and cocondensation with heptane. This black powder is a highly active hydrogenation catalyst for the reduction of a variety of unactivated (non-conjugated) mono-, di- and tri-substituted alkenes, tetraphenylethylene, benzene, a number of polycyclic aromatic hydrocarbons, aldimines, ketimines and various pyridines. The performance of metallic Ba in hydrogenation catalysis tops that of the hitherto most active molecular group 2 metal catalysts. Depending on the substrate, two different catalytic cycles are proposed. A: a classical metal hydride cycle and B: the Ba metal cycle. The latter is proposed for substrates that are easily reduced by Ba0 , that is, conjugated alkenes, alkynes, annulated rings, imines and pyridines. In addition, a mechanism in which Ba0 and BaH2 are both essential is discussed. DFT calculations on benzene hydrogenation with a simple model system (Ba/BaH2 ) confirm that the presence of metallic Ba has an accelerating effect.

19.
Chemistry ; 26(62): 14194-14210, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32666598

RESUMO

Quantum chemical calculations of the alkaline-earth oxides, imides and dihydrides of the alkaline-earth atoms (Ae=Be, Mg, Ca, Sr, Ba) and the calcium cluster Ca6 H9 [N(SiMe3 )2 ]3 (pmdta)3 (pmdta=N,N,N',N'',N''-pentamethyldiethylenetriamine) have been carried out by using density functional theory. Analysis of the electronic structures by charge and energy partitioning methods suggests that the valence orbitals of the lighter atoms Be and Mg are the (n)s and (n)p orbitals. In contrast, the valence orbitals of the heavier atoms Ca, Sr and Ba comprise the (n)s and (n-1)d orbitals. The alkaline-earth metals Be and Mg build covalent bonds like typical main-group elements, whereas Ca, Sr and Ba covalently bind like transition metals. The results not only shed new light on the covalent bonds of the heavier alkaline-earth metals, but are also very important for understanding and designing experimental studies.

20.
Chemistry ; 26(36): 8101-8104, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32130743

RESUMO

The alkaline earth metals (M=Mg, Ca, Sr, and Ba) exhibit a +2 oxidation state in nearly all known stable compounds, but MI dimeric complexes with M-M bonding, [M2 (en)2 ]2+ , (en=ethylenediamine) of all these metals can be stabilized within the galleries of donor-type graphite intercalation compounds (GICs). These metals can also form GICs with more conventional metal (II) ion complexes, [M(en)2 ]2+ . Here, the facile interconversion between dimeric-MI and monomeric-MII intercalates upon the addition/removal of en are reported. Thermogravimetry, powder X-ray diffraction, and pair distribution function analysis of total scattering data support the presence of either [M2 (en)2 ]2+ or [M(en)2 ]2+ guests. This phase conversion requires coupling graphene and metal redox centers, with associated reversible M-M bond formation within graphene galleries. This chemistry allows the facile isolation of unusual oxidation states, reveals M0 →M2+ reaction pathways, and present new opportunities in the design of hybrid conversion/intercalation materials for applications such as charge storage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa