Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(42): 18639-18645, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32627908

RESUMO

Sulfur as a side product of natural gas and oil refining is an underused resource. Converting landfilled sulfur waste into materials merges the ecological imperative of resource efficiency with economic considerations. A strategy to convert sulfur into polymeric materials is the inverse vulcanization reaction of sulfur with alkenes. However, the materials formed are of limited applicability, because they need to be cured at high temperatures (>130 °C) for many hours. Herein, we report the reaction of elemental sulfur with styrylethyltrimethoxysilane. Marrying the inverse vulcanization and silane chemistry yielded high sulfur content polysilanes, which could be cured via room temperature polycondensation to obtain coated surfaces, particles, and crosslinked materials. The polycondensation was triggered by hydrolysis of poly(sulfur-r-styrylethyltrimethoxysilane) (poly(Sn -r-StyTMS) under mild conditions (HCl, pH 4). For the first time, an inverse vulcanization polymer could be conveniently coated and mildly cured via post-polycondensation. Silica microparticles coated with the high sulfur content polymer could improve their Hg2+ ion remediation capability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa