Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38498547

RESUMO

Almond processing generates a high quantity of by-products, presenting the untapped potential for alternative applications and improved sustainability in production. This study aimed to evaluate whether the incorporation of almond by-products (hulls/shells) can improve the biochemical characteristics of green bean pods when used as an alternative to traditional growing media in green bean plants. Four substrates were prepared: the Control substrate (C): 70% peat + 30% perlite; substrate (AS): 70% peat + 30% shells; substrate (AH): 70% peat + 30% perlite + 1 cm hulls as mulch; substrate (MIX): 70% peat + 15% shells + 15% hulls. Plants were grown in each of these substrates and subjected to two irrigation levels, 100% and 50% of their water-holding capacity. Biochemical parameters (photosynthetic pigments, total phenolics, flavonoids, ortho-diphenols, soluble proteins, antioxidant capacity) and color were evaluated in the harvested pods. Results showed that pods from plants growing in AH substrate presented statistically significant higher values in their total phenolic content, while AS and MIX substrates did not reveal significant benefits. Summarily, this study highlights the potential of almond hulls as a promising medium for green bean cultivation, particularly when employed as mulch. Further research is recommended to gain a more comprehensive understanding of the application of almond by-products as natural fertilizers/mulch.

2.
Nutrients ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986275

RESUMO

The almond industry produces, by bleaching and stripping, two by-products: blanched skin (BS) and blanch water (BW). The aim of this study was to investigate the nutritional and polyphenolic profile, as well as the antioxidant, antimicrobial, antiviral, and potential prebiotic effects of BS and BW from three different Sicilian cultivars. The total phenols and flavonoids contents were ≥1.72 and ≥0.56 g gallic acid equivalents and ≥0.52 and ≥0.18 g rutin equivalents/100 g dry extract (DE) in BS and BW, respectively. The antioxidant activity, evaluated by 2,2-diphenyl-1-picrylhydrazyl scavenging ability, trolox equivalent antioxidant capacity, ferric-reducing antioxidant power, and oxygen radical absorbance capacity, was ≥3.07 and ≥0.83 g trolox equivalent/100 g DE in BS and BW, respectively. Isorhamnetin-3-O-glucoside was the most abundant flavonoid detected in both by-products. No antimicrobial effect was recorded, whereas BS samples exerted antiviral activity against herpes simplex virus 1 (EC50 160.96 µg/mL). BS also showed high fibre (≥52.67%) and protein (≥10.99) contents and low fat (≤15.35%) and sugars (≤5.55%), making it nutritionally interesting. The present study proved that the cultivar is not a discriminating factor in determining the chemical and biological properties of BS and BW.


Assuntos
Antioxidantes , Prunus dulcis , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/farmacologia , Flavonoides/química , Fenóis/farmacologia , Fenóis/química
3.
Int J Food Microbiol ; 395: 110194, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37004495

RESUMO

Almond production generates large amounts of by-products rich in polyphenols. In this study, almond skin was explored as a valuable food ingredient in bread making. To this purpose, almond skin was used to produce functional products modifying a traditional sourdough bread recipe. The doughs were prepared replacing semolina with powdered almond skin (PAS) at 5 and 10 % (w/w). Sourdough inoculum was started with a mix of lactic acid bacteria (LAB) and propagated in semolina until reaching pH 3.7. The pH of PAS added breads was higher than that of control (CTR) breads before and after fermentation. Plate counts showed a similar evolution of LAB and total mesophilic microorganisms, but members of Enterobacteriaceae and coliform were detectable in PAS doughs. Illumina data clearly showed a dominance of lactobacilli in all trials, but PAS doughs displayed the presence of Bacillus. The final bread characteristics were influenced by PAS and its addition percentage; in particular, crust and crumb colour resulted darker, the alveolation decreased and, regarding sensory attributes, odour intensity increased, while bread odour diminished. In presence of PAS, bread emissions were characterized by lower percentages of alcohols and aromatic hydrocarbons and higher percentages of the other volatile compound classes, especially terpenoids like ß-pinene, ß-myrcene and limonene than CTR trial. After in vitro simulated digestion, the final release of phytochemicals from 10 % PAS bread was almost 100 %. Thus, PAS determined an increase of the antioxidant capacity of the breads. Phytochemicals released from digested PAS-fortified bread can provide antioxidant protection in a complex biological environment such as human intestinal-like cells. Besides the positive functional properties of PAS, this work also evidenced the hygienic issues of almond skin and, in order to avoid potential risks for the human health, highlighted the need to preserve its microbiological characteristics during storage for their reuse in bread production.


Assuntos
Lactobacillales , Prunus dulcis , Humanos , Pão/microbiologia , Antioxidantes , Lactobacillus , Triticum/microbiologia , Fermentação , Grão Comestível
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa