Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(1): e202302999, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37786922

RESUMO

A simple sequential addition protocol for the reductive coupling of ketones and aldehydes by a potassium aluminyl grants access to unsymmetrical pinacolate derivatives. Isolation of an aluminium ketyl complex presents evidence for the accessibility of radical species. Product release from the aluminium centre was achieved using an iodosilane, forming the disilylated 1,2-diol and a neutral aluminium iodide, thereby demonstrating the steps required to generate a closed synthetic cycle for pinacol (cross) coupling at an aluminyl anion.

2.
Angew Chem Int Ed Engl ; 63(23): e202404527, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38545953

RESUMO

Bimetallic compounds containing direct metal-group 13 element bonds have been shown to display unprecedented patterns of cooperative reactivity towards small molecules, which can be influenced by the identity of the group 13 element. In this context, we present here a systematic appraisal of group 13 metallo-ligands of the type [(NON)E]- (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) for E=Al, Ga and In, through a comparison of structural and spectroscopic parameters associated with the trans L or X ligands in linear d10 complexes of the types LM{E(NON)} and XM'{E(NON)}. These studies are facilitated by convenient syntheses (from the In(I) precursor, InCp) of the potassium indyl species [{K(NON)In}⋅KCp]n (1) and [(18-crown-6)2K2Cp] [(NON)In] (1'), and lead to the first structural characterisation of Ag-In and Hg-E (E=Al, In) covalent bonds. The resulting structural, spectroscopic and quantum chemical probes of Ag/Hg complexes are consistent with markedly stronger σ-donor capabilities of the aluminyl ligand, [(NON)Al]-, over its gallium and indium counterparts.

3.
Chemistry ; 29(71): e202302903, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37786384

RESUMO

The reaction of 9-diazo-9H-fluorene (fluN2 ) with the potassium aluminyl K[Al(NON)] ([NON]2- =[O(SiMe2 NDipp)2 ]2- , Dipp=2,6-iPr2 C6 H3 ) affords K[Al(NON)(κN1 ,N3 -{(fluN2 )2 })] (1). Structural analysis shows a near planar 1,4-di(9H-fluoren-9-ylidene)tetraazadiide ligand that chelates to the aluminium. The thermally induced elimination of dinitrogen from 1 affords the neutral aluminium ketimide complex, Al(NON)(N=flu)(THF) (2) and the 1,2-di(9H-fluoren-9-yl)diazene dianion as the potassium salt, [K2 (THF)3 ][fluN=Nflu] (3). The reaction of 2 with N,N'-diisopropylcarbodiimide (iPrN=C=NiPr) affords the aluminium guanidinate complex, Al(NON){N(iPr)C(N=CMe2 )N(CHflu)} (4), showing a rare example of reactivity at a metal ketimide ligand. Density functional theory (DFT) calculations have been used to examine the bonding in the newly formed [(fluN2 )2 ]2- ligand in 1 and the ketimide bonding in 2. The mechanism leading to the formation of 4 has also been studied using this technique.

4.
Chemistry ; 29(21): e202203584, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36660925

RESUMO

The electronic features of gold-aluminyl complexes have been thoroughly explored. Their similarity with Group 14 dimetallenes and other metal-aluminyl complexes suggests that their reactivity with small molecules beyond carbon dioxide could be accessed. In this work, the reactivity of the [t Bu3 PAuAl(NON)] (NON=4,5-bis(2,6 diisopropylanilido)-2,7-ditert-butyl-9,9-dimethylxanthene) complex towards water, ammonia, sulfur dioxide and nitrous oxide is computationally explored. The reaction mechanisms computed for each substrate strongly suggest that all activation processes are in principle experimentally feasible. Electronic structure analysis highlights that, in all cases, the reactivity is driven by the presence of the poorly polarized electron-sharing gold-aluminyl bond, which induces a radical-like reactivity of the complex towards all the substrates. A flat topology of the potential energy surface (PES) has been found for the reaction with N2 O, where two almost isoenergetic transition states can be located along the same reaction coordinate with different geometries, suggesting that the N2 O binding mode may not be a good indicator of the nature of N2 O activation in a cooperative bimetallic reactivity. In addition, the catalytic potentialities of these complexes have been explored in the framework of nitrous oxide reduction. The study reveals that the [t Bu3 PAuAl(NON)] complex might be an efficient catalyst towards oxidation of phosphines (and boranes) via N2 O reduction. These findings underline recurring trends in the novel chemistry of gold-aluminyl complexes and call for experimental feedbacks.

5.
Chemistry ; 29(8): e202203216, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36349746

RESUMO

The oxidative addition of C-C bonds in aromatic hydrocarbons by low valent main group species has attracted considerable attention from both theoretical and experimental chemists due to the big challenge in breaking their aromaticity. Herein, a general strategy to break the C-C bonds in benzene by cyclic (alkyl)(amino)aluminyl anion is demonstrated via density functional theory (DFT) calculations. The results suggest that the activation of the C-C bond of benzene by this anion is both kinetically and thermodynamically unfavorable whereas introducing electron-withdrawing groups makes such C-C bond activation becomes favorable both kinetically and thermodynamically. Such a sharp change on the kinetics and thermodynamics could be rationalized by the frontier molecular orbital theory by decreasing the lowest unoccupied molecular orbitals of the mono- and disubstituted benzenes. Aromaticity is found to stabilize the transition state for the ring open step. All these findings can help develop the chemistry of small-molecule activation.

6.
Angew Chem Int Ed Engl ; 61(16): e202117396, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35166007

RESUMO

The potassium aluminyl [K{Al(NONDipp )}]2 ([NONDipp ]2- =[O{SiMe2 NDipp}2 ]2- , Dipp=2,6-iPr2 C6 H3 ) activates ethene towards carbonylation with CO under mild conditions. An isolated bis-aluminacyclopropane compound reacted with CO via carbonylation of an Al-C bond, followed by an intramolecular hydrogen shift to form K2 [Al(NONDipp )(µ-CH2 CH=CO-1κ2 C1,3 -2κO)Al(NONDipp )Et]. Restricting the chemistry to a mono-aluminium system allowed isolation of [Al(NONDipp )(CH2 CH2 CO-κ2 C1,3 )]- , which undergoes thermal isomerisation to form the [Al(NONDipp )(CH2 CH=CHO-κ2 C,O)]- anion. DFT calculations highlight the stabilising influence of incorporated benzene at multiple steps in the reaction pathways.

7.
Angew Chem Int Ed Engl ; 61(42): e202211800, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36047610

RESUMO

[1+2] cycloaddition between a cyclic (alkyl)(amino)aluminyl anion (3) and diaryldiazomethane affords an AlN2 three-membered ring species (4). Compound (4) is thermally unstable and spontaneously releases N2 gas under the mild reaction condition to generate an ion-separated species 5. An X-ray study shows that the anionic part of 5 bears a considerable short exocyclic Al-C bond, and computational studies involving molecular orbital and natural bond orbital analysis indicate the Al=C π bonding character. The Al=C moiety of 5 undergoes intramolecular C-H activation. Moreover, reaction of 5 with a diazo compound leads to the reduction and complete cleavage of the N=N double bond.

8.
Chemistry ; 27(69): 17369-17378, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34613646

RESUMO

Aluminyl anions are low-valent, anionic, and carbenoid aluminum species commonly found stabilized with potassium cations from the reaction of Al-halogen precursors and alkali compounds. These systems are very reactive toward the activation of σ-bonds and in reactions with electrophiles. Various research groups have detected that the potassium atoms play a stabilization role via electrostatic and cation ⋯ π interactions with nearby (aromatic)-carbocyclic rings from both the ligand and from the reaction with unsaturated substrates. Since stabilizing K⋯H bonds are witnessed in the activation of this class of molecules, we aim to unveil the role of these metals in the activation of the smaller and less polarizable H2 molecule, together with a comprehensive characterization of the reaction mechanism. In this work, the activation of H2 utilizing a NON-xanthene-Al dimer, [K{Al(NON)}]2 (D) and monomeric, [Al(NON)]- (M) complexes are studied using density functional theory and high-level coupled-cluster theory to reveal the potential role of K+ atoms during the activation of this gas. Furthermore, we aim to reveal whether D is more reactive than M (or vice versa), or if complicity between the two monomer units exits within the D complex toward the activation of H2 . The results suggest that activation energies using the dimeric and monomeric complexes were found to be very close (around 33 kcal mol-1 ). However, a partition of activation energies unveiled that the nature of the energy barriers for the monomeric and dimeric complexes are inherently different. The former is dominated by a more substantial distortion of the reactants (and increased interaction energies between them). Interestingly, during the oxidative addition, the distortion of the Al complex is minimal, while H2 distorts the most, usually over 0.77 Δ E d i s t ≠ . Overall, it is found here that electrostatic and induction energies between the complexes and H2 are the main stabilizing components up to the respective transition states. The results suggest that the K+ atoms act as stabilizers of the dimeric structure, and their cooperative role on the reaction mechanism may be negligible, acting as mere spectators in the activation of H2 . Cooperation between the two monomers in D is lacking, and therefore the subsequent activation of H2 is wholly disengaged.

9.
Angew Chem Int Ed Engl ; 60(41): 22289-22292, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34402149

RESUMO

To date, aluminyl anions have been exclusively isolated as their potassium salts. We report herein the synthesis of the lithium and sodium aluminyls, M2 [Al(NONDipp )]2 (M=Li, Na. NONDipp =[O(SiMe2 NDipp)2 ]2- ; Dipp=2,6-iPr2 C6 H3 ). Both compounds crystallize from non-coordinating solvent as "slipped" contacted dimeric pairs with strong M⋅⋅⋅π(aryl) interactions. Isolation from Et2 O solution affords the monomeric ion pairs (NONDipp )Al-M(Et2 O)2 , which contain discrete Al-Li and Al-Na bonds. The ability of the full series of Li, Na and K aluminyls to activate dihydrogen is reported.

10.
Angew Chem Int Ed Engl ; 60(41): 22301-22306, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34396660

RESUMO

Synthetic routes to lithium, magnesium, and zinc aluminyl complexes are reported, allowing for the first structural characterization of an unsupported lithium-aluminium bond. Crystallographic and quantum-chemical studies are consistent with the presence of a highly polar Li-Al interaction, characterized by a low bond order and relatively little charge transfer from Al to Li. Comparison with magnesium and zinc aluminyl systems reveals changes to both the M-Al bond and the (NON)Al fragment (where NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene), consistent with a more covalent character, with the latter complex being shown to react with CO2 via a pathway that implies that the zinc centre acts as the nucleophilic partner.

11.
Angew Chem Int Ed Engl ; 60(51): 26550-26554, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34677901

RESUMO

By employing the highly reducing aluminyl complex [K{(NON)Al}]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene), we demonstrate the controlled formation of P4 2- and P4 4- complexes from white phosphorus, and chemically reversible inter-conversion between them. The tetra-anion features a unique planar π-bonded structure, with the incorporation of the K+ cations implicit in the use of the anionic nucleophile offering additional stabilization of the unsaturated isomer of the P4 4- fragment. This complex is extremely reactive, acting as a source of P3- : exposure to ammonia leads to the release of phosphine (PH3 ) under mild conditions (room temperature and pressure), which contrast with those necessitated for the direct combination of P4 and NH3 (>5 kbar and >250 °C).

12.
Angew Chem Int Ed Engl ; 60(4): 1702-1713, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-32567755

RESUMO

Trivalent aluminium compounds are well known for their reactivity as Lewis acids/electrophiles, a feature that is exploited in many pharmaceutical, industrial and laboratory-based reactions. Recently, a series of isolable aluminium(I) anions ("aluminyls") have been reported, which offer an alternative to this textbook description: these reagents behave as aluminium nucleophiles. This minireview covers the synthesis, structure and reactivity of aluminyl species reported to date, together with their associated metal complexes. The frontier orbitals of each of these species have been investigated using a common methodology to allow for a like-for-like comparison of their electronic structure and a means of rationalising (sometimes unprecedented) patterns of reactivity.

13.
Angew Chem Int Ed Engl ; 59(31): 12806-12810, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32378311

RESUMO

[K{Al(NONDipp )}]2 (NONDipp =[O(SiMe2 NDipp)2 ]2- , Dipp=2,6-iPr2 C6 H3 ) reacts with CS2 to afford the trithiocarbonate species [K(OEt2 )][Al(NONDipp )(CS3 )] 1 or the ethenetetrathiolate complex, [K{Al(NONDipp )(S2 C)}]2 [3]2 . The dimeric alumoxane [K{Al(NONDipp )(O)}]2 reacts with carbon monoxide to afford the oxygen analogue of 3, [K{Al(NONDipp )(O2 C)}]2 [4]2 containing the hitherto unknown ethenetetraolate ligand, [C2 O4 ]4- .

14.
Angew Chem Int Ed Engl ; 59(12): 4897-4901, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31999037

RESUMO

Anionic molecular imide complexes of aluminium are accessible via a rational synthetic approach involving the reactions of organo azides with a potassium aluminyl reagent. In the case of K2 [(NON)Al(NDipp)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene; Dipp=2,6-diisopropylphenyl) structural characterization by X-ray crystallography reveals a short Al-N distance, which is thought primarily to be due to the low coordinate nature of the nitrogen centre. The Al-N unit is highly polar, and capable of the activation of relatively inert chemical bonds, such as those found in dihydrogen and carbon monoxide. In the case of CO, uptake of two molecules of the substrate leads to C-C coupling and C≡O bond cleavage. Thermodynamically, this is driven, at least in part, by Al-O bond formation. Mechanistically, a combination of quantum chemical and experimental observations suggests that the reaction proceeds via exchange of the NR and O substituents through intermediates featuring an aluminium-bound isocyanate fragment.

15.
Angew Chem Int Ed Engl ; 59(46): 20376-20380, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32722863

RESUMO

The reactivity of the electron-rich anionic AlI aluminyl compound K2 [(NON)Al]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) towards mono- and disubstituted arenes is reported. C-H activation chemistry with n-butylbenzene gives exclusively the product of activation at the arene meta position. Mechanistically, this transformation proceeds in a single step via a concerted Meisenheimer-type transition state. Selectivity is therefore based on similar electronic factors to classical SN Ar chemistry, which implies the destabilisation of transition states featuring electron-donating groups in either ortho or para positions. In the cases of toluene and the three isomers of xylene, benzylic C-H activation is also possible, with the product(s) formed reflecting the feasibility (or otherwise) of competing arene C-H activation at a site which is neither ortho nor para to a methyl substituent.

16.
Angew Chem Int Ed Engl ; 58(48): 17265-17268, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31550066

RESUMO

Aluminium oxides constitute an important class of inorganic compound that are widely exploited in the chemical industry as catalysts and catalyst supports. Due to the tendency for such systems to aggregate via Al-O-Al bridges, the synthesis of well-defined, soluble, molecular models for these materials is challenging. Here we show that reactions of the potassium aluminyl complex K2 [(NON)Al]2 (NON=4,5-bis(2,6-diiso-propylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) with CO2 , PhNCO and N2 O all proceed via a common aluminium oxide intermediate. This highly reactive species can be trapped by coordination of a THF molecule as the anionic oxide complex [(NON)AlO(THF)]- , which features discrete Al-O bonds and dimerizes in the solid state via weak O⋅⋅⋅K interactions. This species reacts with a range of small molecules including N2 O (to give a hyponitrite ([N2 O2 ]2- ) complex) and H2 , the latter offering an unequivocal example of heterolytic E-H bond cleavage across a main group M-O bond.

17.
Angew Chem Int Ed Engl ; 58(5): 1489-1493, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30548141

RESUMO

The potassium aluminyl complex K[Al(NONAr )] (NON=NONAr =[O(SiMe2 NAr)2 ]2- , Ar=2,6-iPr2 C6 H3 ) reacts with 1,3,5,7-cyclooctatetraene (COT) to give K[Al(NONAr )(COT)]. The COT-ligand is present in the asymmetric unit as a planar µ2 -η2 :η8 -bridge between Al and K, with additional K⋅⋅⋅π-aryl interactions to neighboring molecules that generate a helical chain. DFT calculations indicate significant aromatic character, consistent with reduction to [COT]2- . Addition of 18-crown-6 causes a rearrangement of the C8 -carbocycle to form the isomeric 9-aluminabicyclo[4.2.1]nona-2,4,7-triene anion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa