Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Cell ; 185(18): 3408-3425.e29, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985322

RESUMO

Genetically encoded voltage indicators are emerging tools for monitoring voltage dynamics with cell-type specificity. However, current indicators enable a narrow range of applications due to poor performance under two-photon microscopy, a method of choice for deep-tissue recording. To improve indicators, we developed a multiparameter high-throughput platform to optimize voltage indicators for two-photon microscopy. Using this system, we identified JEDI-2P, an indicator that is faster, brighter, and more sensitive and photostable than its predecessors. We demonstrate that JEDI-2P can report light-evoked responses in axonal termini of Drosophila interneurons and the dendrites and somata of amacrine cells of isolated mouse retina. JEDI-2P can also optically record the voltage dynamics of individual cortical neurons in awake behaving mice for more than 30 min using both resonant-scanning and ULoVE random-access microscopy. Finally, ULoVE recording of JEDI-2P can robustly detect spikes at depths exceeding 400 µm and report voltage correlations in pairs of neurons.


Assuntos
Microscopia , Neurônios , Animais , Interneurônios , Camundongos , Microscopia/métodos , Neurônios/fisiologia , Fótons , Vigília
2.
Am J Physiol Cell Physiol ; 327(3): C716-C727, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39010839

RESUMO

Gap junctions are channels that allow for direct transmission of electrical signals between cells. However, the ability of one cell to be impacted or controlled by other cells through gap junctions remains unclear. In this study, heterocellular coupling between ON α retinal ganglion cells (α-RGCs) and displaced amacrine cells (ACs) in the mouse retina was used as a model. The impact of the extent of coupling of interconnected ACs on the synchronized firing between coupled ON α-RGC-AC pair was investigated using the dopamine 1 receptor (D1R) antagonist-SCH23390 and agonist-SKF38393. It was observed that the synchronized firing between the ON α-RGC-ACs pairs was increased by the D1R antagonist SCH23390, whereas it was eradicated by the agonist SKF38393. Subsequently, the signaling drive was investigated by infecting coupled ON α-RGC-AC pairs with the channelrhodopsin-2(ChR2) mutation L132C engineered to enhance light sensitivities. The results demonstrated that the spikes of ON α-RGCs (without ChR2) could be triggered by ACs (with ChR2) through the gap junction, and vice versa. Furthermore, it was observed that ON α-RGCs stimulated with 3-10 Hz currents by whole cell patch could elicit synchronous spikes in the coupled ACs, and vice versa. This provided direct evidence that the firing of one cell could be influenced by another cell through gap junctions. However, this phenomenon was not observed between OFF α-RGC pairs. The study implied that the synchronized firing between ON α-RGC-AC pairs could potentially be affected by the coupling of interconnected ACs. Additionally, one cell type could selectively control the firing of another cell type, thereby forcefully transmitting information. The key role of gap junctions in synchronizing firing and driving cells between α-RGCs and coupled ACs in the mouse retina was highlighted.NEW & NOTEWORTHY This study investigates the role of gap junctions in transmitting electrical signals between cells and their potential for cell control. Using ON α retinal ganglion cells (α-RGCs) and amacrine cells (ACs) in the mouse retina, the researchers find that the extent of coupling between ACs affects synchronized firing. Bidirectional signaling occurs between ACs and ON α-RGCs through gap junctions.


Assuntos
Potenciais de Ação , Células Amácrinas , Junções Comunicantes , Células Ganglionares da Retina , Animais , Células Amácrinas/metabolismo , Células Amácrinas/fisiologia , Células Amácrinas/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Camundongos , Junções Comunicantes/metabolismo , Junções Comunicantes/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Retina/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/agonistas , Comunicação Celular/fisiologia , Masculino , Channelrhodopsins/metabolismo , Channelrhodopsins/genética
3.
Exp Eye Res ; 245: 109985, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945518

RESUMO

Aging is a major risk factor for the development or the worsening of retinal degenerative conditions. The intricate network of the neural retina determined that the retinal aging is a complicated process. The aim of this study is to delineate the transcriptomic changes of major retinal neurons during aging in C57BL/6 mice at single-cell level. We analyzed the transcriptional profiles of the photoreceptor, bipolar, amacrine, and Müller glial cells of 1.5-2 and 24-30 months old mice using single-cell RNA sequencing technique. We selectively confirmed the differences in gene expression using immunofluorescence staining and RNA in situ hybridization analysis. We found that each retinal cell type had unique changes upon aging. However, they all showed signs of dysregulated glucose and energy metabolism, and perturbed proteostasis. In particular, old Müller glia exhibited the most profound changes, including the upregulation of cell metabolism, stress-responses, antigen-presentation and immune responses and metal ion homeostasis. The dysregulated gliogenesis and differentiation was confirmed by the presence of Müller glia expressing rod-specific genes in the inner nuclear layer and the outer plexiform layer of the old retina. We further pinpointed the specific loss of GABAergic amacrine cells in old retina. Our study emphasized changes of amacrine and Müller glia during retinal aging, provided resources for further research on the molecular and cellular regulatory mechanisms underlying aging-associated retinal deterioration.


Assuntos
Envelhecimento , Células Amácrinas , Metabolismo Energético , Camundongos Endogâmicos C57BL , Proteostase , Animais , Células Amácrinas/metabolismo , Camundongos , Envelhecimento/fisiologia , Metabolismo Energético/fisiologia , Células Ependimogliais/metabolismo , Retina/metabolismo , Neurônios GABAérgicos/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/genética , Hibridização In Situ , Homeostase/fisiologia
4.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474095

RESUMO

We recently identified PKN1 as a developmentally active gatekeeper of the transcription factor neuronal differentiation-2 (NeuroD2) in several brain areas. Since NeuroD2 plays an important role in amacrine cell (AC) and retinal ganglion cell (RGC) type formation, we aimed to study the expression of NeuroD2 in the postnatal retina of WT and Pkn1-/- animals, with a particular focus on these two cell types. We show that PKN1 is broadly expressed in the retina and that the gross retinal structure is not different between both genotypes. Postnatal retinal NeuroD2 levels were elevated upon Pkn1 knockout, with Pkn1-/- retinae showing more NeuroD2+ cells in the lower portion of the inner nuclear layer. Accordingly, immunohistochemical analysis revealed an increased amount of AC in postnatal and adult Pkn1-/- retinae. There were no differences in horizontal cell, bipolar cell, glial cell and RGC numbers, nor defective axon guidance to the optic chiasm or tract upon Pkn1 knockout. Interestingly, we did, however, see a specific reduction in SMI-32+ α-RGC in Pkn1-/- retinae. These results suggest that PKN1 is important for retinal cell type formation and validate PKN1 for future studies focusing on AC and α-RGC specification and development.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Células Amácrinas/metabolismo , Quiasma Óptico/metabolismo , Fatores de Transcrição/metabolismo
5.
J Neurosci ; 42(9): 1630-1647, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35017223

RESUMO

Amacrine cells, inhibitory interneurons of the retina, feature synaptic inputs and outputs in close proximity throughout their dendritic trees, making them notable exceptions to prototypical somato-dendritic integration with output transmitted via axonal action potentials. The extent of dendritic compartmentalization in amacrine cells with widely differing dendritic tree morphology, however, is largely unexplored. Combining compartmental modeling, dendritic Ca2+ imaging, targeted microiontophoresis and multielectrode patch-clamp recording (voltage and current clamp, capacitance measurement of exocytosis), we investigated integration in the AII amacrine cell, a narrow-field electrically coupled interneuron that participates in multiple, distinct microcircuits. Physiological experiments were performed with in vitro slices prepared from retinas of both male and female rats. We found that the morphology of the AII enables simultaneous local and global integration of inputs targeted to different dendritic regions. Local integration occurs within spatially restricted dendritic subunits and narrow time windows and is largely unaffected by the strength of electrical coupling. In contrast, global integration across the dendritic tree occurs over longer time periods and is markedly influenced by the strength of electrical coupling. These integrative properties enable AII amacrines to combine local control of synaptic plasticity with location-independent global integration. Dynamic inhibitory control of dendritic subunits is likely to be of general importance for amacrine cells, including cells with small dendritic trees, as well as for inhibitory interneurons in other regions of the CNS.SIGNIFICANCE STATEMENT Our understanding of synaptic integration is based on the prototypical morphology of a neuron with multiple dendrites and a single axon at opposing ends of a cell body. Many neurons, notably retinal amacrine cells, are exceptions to this arrangement, and display input and output synapses interspersed along their dendritic branches. In the large dendritic trees of some amacrine cells, such arrangements can give rise to multiple computational subunits. Other amacrine cells, with small dendritic trees, have been assumed to operate as single computational units. Here, we report the surprising result that despite a small dendritic tree, the AII amacrine cell simultaneously performs local integration of synaptic inputs (over smaller dendritic subregions) and global integration across the entire cell.


Assuntos
Células Amácrinas , Retina , Células Amácrinas/fisiologia , Animais , Axônios , Dendritos/fisiologia , Feminino , Interneurônios , Masculino , Ratos , Retina/fisiologia , Sinapses
6.
J Physiol ; 601(23): 5317-5340, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864560

RESUMO

In Nyxnob mice, a model for congenital nystagmus associated with congenital stationary night blindness (CSNB), synchronous oscillating retinal ganglion cells (RGCs) lead to oscillatory eye movements, i.e. nystagmus. Given the specific expression of mGluR6 and Cav 1.4 in the photoreceptor to bipolar cell synapses, as well as their clinical association with CSNB, we hypothesize that Grm6nob3 and Cav 1.4-KO mutants show, like the Nyxnob mouse, oscillations in both their RGC activity and eye movements. Using multi-electrode array recordings of RGCs and measurements of the eye movements, we demonstrate that Grm6nob3 and Cav 1.4-KO mice also show oscillations of their RGCs as well as a nystagmus. Interestingly, the preferred frequencies of RGC activity as well as the eye movement oscillations of the Grm6nob3 , Cav 1.4-KO and Nyxnob mice differ among mutants, but the neuronal activity and eye movement behaviour within a strain remain aligned in the same frequency domain. Model simulations indicate that mutations affecting the photoreceptor-bipolar cell synapse can form a common cause of the nystagmus of CSNB by driving oscillations in RGCs via AII amacrine cells. KEY POINTS: In Nyxnob mice, a model for congenital nystagmus associated with congenital stationary night blindness (CSNB), their oscillatory eye movements (i.e. nystagmus) are caused by synchronous oscillating retinal ganglion cells. Here we show that the same mechanism applies for two other CSNB mouse models - Grm6nob3 and Cav 1.4-KO mice. We propose that the retinal ganglion cell oscillations originate in the AII amacrine cells. Model simulations show that by only changing the input to ON-bipolar cells, all phenotypical differences between the various genetic mouse models can be reproduced.


Assuntos
Miopia , Cegueira Noturna , Nistagmo Congênito , Camundongos , Animais , Cegueira Noturna/genética , Cegueira Noturna/metabolismo , Miopia/genética , Miopia/metabolismo , Células Ganglionares da Retina/fisiologia , Mutação , Eletrorretinografia
7.
Exp Eye Res ; 234: 109604, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499737

RESUMO

The purpose was to quantify ocular dopamine in rabbits after stimulation of the optic nerve head with short-wavelength (blue) light to activate melanopsin expressed in the axons of intrinsically photosensitive retinal ganglion cells (ipRGCs). Dopamine levels in tears, aqueous humor, vitreous body, and retina (including choroid) were quantified after blue light stimulation of the optic nerve head of 15 rabbits with an optical fiber for 1 min, 10 min, or no stimulation (n = 5, each group). The left eye of all rabbits was operated on to introduce the optical fiber and stimulate the optic nerve, while the contralateral eye served as internal control. One minute of blue light stimulation significantly increased dopamine concentration in the vitreous body of the treated eyes compared to the contralateral ones (P = 0.015). Stimulation for 10 min significantly increased dopamine concentration in the vitreous body, as well as the aqueous humor (P < 0.05). Therefore, using an optical fiber approach to stimulate the optic nerve head with blue light significantly increased dopamine concentration in the aqueous humor and the vitreous body. This likely reflects an upregulation of retinal dopamine synthesis that could be attributed to ipRGC activation. However, the data provided in this study fell short of establishing a definitive link between dopamine release and ipRGC activation, mainly due to the lack of evidence supporting the expression of the melanopsin photopigment in the optic nerve.


Assuntos
Disco Óptico , Animais , Coelhos , Disco Óptico/metabolismo , Dopamina/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Luz , Opsinas de Bastonetes/metabolismo , Estimulação Luminosa
8.
BMC Biol ; 20(1): 205, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36127701

RESUMO

BACKGROUND: Oxytocin, secreted by oxytocin neurons in the hypothalamus, is an endogenous neuropeptide involved in modulating multiple sensory information processing pathways, and its roles in the brain have been associated with prosocial, maternal, and feeding-related behaviors. Visual information is necessary for initiating these behaviors, with the retina consisting of the first stage in the visual system mediating external stimulus perception. Oxytocin has been detected in the mammalian retina; however, the expression and possible function of oxytocin receptors (OxtR) in the retina remain unknown. Here, we explore the role of oxytocin in regulating visual information processing in the retina. RESULTS: We observed that OxtR mRNA and protein are expressed in the mouse retina. With Oxtr-Cre transgenic mice, immunostaining, and fluorescence in situ hybridization, we found that OxtRs are mainly expressed in GABAergic amacrine cells (ACs) in both the inner nuclear layer (INL) and ganglion cell layer (GCL). Further immunoreactivity studies showed that GABAergic OxtR+ neurons are mainly cholinergic and dopaminergic neurons in the INL and are cholinergic and corticotrophin-releasing hormone neurons in the GCL. Surprisingly, a high level of Oxtr mRNAs was detected in retinal dopaminergic neurons, and exogenous oxytocin application activated dopaminergic neurons to elevate the retinal dopamine level. Relying on in vivo electroretinographic recording, we found that activating retinal OxtRs reduced the activity of bipolar cells via OxtRs and dopamine receptors. CONCLUSIONS: These data indicate the functional expression of OxtRs in retinal GABAergic ACs, especially dopaminergic ACs, and expand the interactions between oxytocinergic and dopaminergic systems. This study suggests that visual perception, from the first stage of information processing in the retina, is modulated by hypothalamic oxytocin signaling.


Assuntos
Células Amácrinas , Neuropeptídeos , Receptores de Ocitocina , Hormônio Adrenocorticotrópico/genética , Hormônio Adrenocorticotrópico/metabolismo , Células Amácrinas/metabolismo , Animais , Colinérgicos/metabolismo , Dopamina/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Camundongos Transgênicos , Neuropeptídeos/metabolismo , Ocitocina/genética , Ocitocina/metabolismo , RNA Mensageiro/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Retina/metabolismo
9.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769051

RESUMO

Dravet syndrome (DS) is an epileptic encephalopathy caused by mutations in the Scn1a gene encoding the α1 subunit of the Nav1.1 sodium channel, which is associated with recurrent and generalized seizures, even leading to death. In experimental models of DS, histological alterations have been found in the brain; however, the retina is a projection of the brain and there are no studies that analyze the possible histological changes that may occur in the disease. This study analyzes the retinal histological changes in glial cells (microglia and astrocytes), retinal ganglion cells (RGCs) and GABAergic amacrine cells in an experimental model of DS (Syn-Cre/Scn1aWT/A1783V) compared to a control group at postnatal day (PND) 25. Retinal whole-mounts were labeled with anti-GFAP, anti-Iba-1, anti-Brn3a and anti-GAD65/67. Signs of microglial and astroglial activation, and the number of Brn3a+ and GAD65+67+ cells were quantified. We found retinal activation of astroglial and microglial cells but not death of RGCs and GABAergic amacrine cells. These changes are similar to those found at the level of the hippocampus in the same experimental model in PND25, indicating a relationship between brain and retinal changes in DS. This suggests that the retina could serve as a possible biomarker in DS.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.1 , Camundongos , Animais , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Retina/patologia , Convulsões/genética , Microglia/patologia , Modelos Animais de Doenças
10.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901822

RESUMO

Parkinson's disease (PD) is a neurodegenerative condition characterized by the progressive deterioration of dopaminergic neurons in the central and peripheral autonomous system and the intraneuronal cytoplasmic accumulation of misfolded α-synuclein. The clinical features are the classic triad of tremor, rigidity, and bradykinesia and a set of non-motor symptoms, including visual deficits. The latter seems to arise years before the onset of motor symptoms and reflects the course of brain disease. The retina, by virtue of its similarity to brain tissue, is an excellent site for the analysis of the known histopathological changes of PD that occur in the brain. Numerous studies conducted on animal and human models of PD have shown the presence of α-synuclein in retinal tissue. Spectral-domain optical coherence tomography (SD-OCT) could be a technique that enables the study of these retinal alterations in vivo. The objective of this review is to describe recent evidence on the accumulation of native or modified α-synuclein in the human retina of patients with PD and its effects on the retinal tissue evaluated through SD-OCT.


Assuntos
Doença de Parkinson , Animais , Humanos , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Doença de Parkinson/patologia , Retina/metabolismo , Tremor/patologia
11.
Vis Neurosci ; 39: E004, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35534787

RESUMO

The vertebrate retina contains a large number of different types of neurons that can be distinguished by their morphological properties. Assuming that no location should be without a contribution from the circuitry and function linked to a specific type of neuron, it is expected that the dendritic trees of neurons belonging to a type will cover the retina in a regular manner. Thus, for most types of neurons, the contribution to visual processing is thought to be independent of the exact location of individual neurons across the retina. Here, we have investigated the distribution of AII amacrine cells in rat retina. The AII is a multifunctional amacrine cell found in mammals and involved in synaptic microcircuits that contribute to visual processing under both scotopic and photopic conditions. Previous investigations have suggested that AIIs are regularly distributed, with a nearest-neighbor distance regularity index of ~4. It has been argued, however, that this presumed regularity results from treating somas as points, without taking into account their actual spatial extent which constrains the location of other cells of the same type. When we simulated random distributions of cell bodies with size and density similar to real AIIs, we confirmed that the simulated distributions could not be distinguished from the distributions observed experimentally for AIIs in different regions and eccentricities of the retina. The developmental mechanisms that generate the observed distributions of AIIs remain to be investigated.


Assuntos
Células Amácrinas , Retina , Células Amácrinas/fisiologia , Animais , Corpo Celular , Mamíferos , Ratos , Retina/fisiologia , Software
12.
Vis Neurosci ; 39: E003, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35543445

RESUMO

During the first postnatal week in rodents, cholinergic retinal waves initiate in starburst amacrine cells (SACs), propagating to retinal ganglion cells (RGCs) and visual centers, essential for visual circuit refinement. By modulating exocytosis in SACs, dynamic changes in the protein kinase A (PKA) activity can regulate the spatiotemporal patterns of cholinergic waves. Previously, cysteine string protein-α (CSPα) is found to interact with the core exocytotic machinery by PKA-mediated phosphorylation at serine 10 (S10). However, whether PKA-mediated CSPα phosphorylation may regulate cholinergic waves via SACs remains unknown. Here, we examined how CSPα phosphorylation in SACs regulates cholinergic waves. First, we identified that CSPα1 is the major isoform in developing rat SACs and the inner plexiform layer during the first postnatal week. Using SAC-specific expression, we found that the CSPα1-PKA-phosphodeficient mutant (CSP-S10A) decreased wave frequency, but did not alter the wave spatial correlation compared to control, wild-type CSPα1 (CSP-WT), or two PKA-phosphomimetic mutants (CSP-S10D and CSP-S10E). These suggest that CSPα-S10 phosphodeficiency in SACs dampens the frequency of cholinergic waves. Moreover, the level of phospho-PKA substrates was significantly reduced in SACs overexpressing CSP-S10A compared to control or CSP-WT, suggesting that the dampened wave frequency is correlated with the decreased PKA activity. Further, compared to control or CSP-WT, CSP-S10A in SACs reduced the periodicity of wave-associated postsynaptic currents (PSCs) in neighboring RGCs, suggesting that these RGCs received the weakened synaptic inputs from SACs overexpressing CSP-S10A. Finally, CSP-S10A in SACs decreased the PSC amplitude and the slope to peak PSC compared to control or CSP-WT, suggesting that CSPα-S10 phosphodeficiency may dampen the speed of the SAC-RGC transmission. Thus, via PKA-mediated phosphorylation, CSPα in SACs may facilitate the SAC-RGC transmission, contributing to the robust frequency of cholinergic waves.


Assuntos
Células Amácrinas , Proteínas de Choque Térmico HSP40 , Células Amácrinas/metabolismo , Animais , Colinérgicos/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana , Fosforilação , Ratos , Retina/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(8): 3262-3267, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30728295

RESUMO

Patterned spontaneous activity periodically displays in developing retinas termed retinal waves, essential for visual circuit refinement. In neonatal rodents, retinal waves initiate in starburst amacrine cells (SACs), propagating across retinal ganglion cells (RGCs), further through visual centers. Although these waves are shown temporally synchronized with transiently high PKA activity, the downstream PKA target important for regulating the transmission from SACs remains unidentified. A t-SNARE, synaptosome-associated protein of 25 kDa (SNAP-25/SN25), serves as a PKA substrate, implying a potential role of SN25 in regulating retinal development. Here, we examined whether SN25 in SACs could regulate wave properties and retinogeniculate projection during development. In developing SACs, overexpression of wild-type SN25b, but not the PKA-phosphodeficient mutant (SN25b-T138A), decreased the frequency and spatial correlation of wave-associated calcium transients. Overexpressing SN25b, but not SN25b-T138A, in SACs dampened spontaneous, wave-associated, postsynaptic currents in RGCs and decreased the SAC release upon augmenting the cAMP-PKA signaling. These results suggest that SN25b overexpression may inhibit the strength of transmission from SACs via PKA-mediated phosphorylation at T138. Moreover, knockdown of endogenous SN25b increased the frequency of wave-associated calcium transients, supporting the role of SN25 in restraining wave periodicity. Finally, the eye-specific segregation of retinogeniculate projection was impaired by in vivo overexpression of SN25b, but not SN25b-T138A, in SACs. These results suggest that SN25 in developing SACs dampens the spatiotemporal properties of retinal waves and limits visual circuit refinement by phosphorylation at T138. Therefore, SN25 in SACs plays a profound role in regulating visual circuit refinement.


Assuntos
Sinalização do Cálcio/genética , Retina/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Vias Visuais/fisiologia , Potenciais de Ação/genética , Células Amácrinas/metabolismo , Células Amácrinas/fisiologia , Animais , Animais Recém-Nascidos/genética , Animais Recém-Nascidos/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Patch-Clamp , Fosforilação , Ligação Proteica , Retina/crescimento & desenvolvimento , Retina/fisiologia , Células Ganglionares da Retina/metabolismo , Potenciais Sinápticos/genética
14.
Neurobiol Dis ; 158: 105469, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34364974

RESUMO

Niemann-Pick type C disease is a rare and fatal lysosomal storage disorder presenting severe neurovisceral symptoms. Disease-causing mutations in genes encoding either NPC1 or NPC2 protein provoke accumulation of cholesterol and other lipids in specific structures of the endosomal-lysosomal system and degeneration of specific cells, notably neurons in the central nervous system (CNS). 2-hydroxypropyl-beta-cyclodextrin (CD) emerged as potential therapeutic approach based on animal studies and clinical data, but the mechanism of action in neurons has remained unclear. To address this topic in vivo, we took advantage of the retina as highly accessible part of the CNS and intravitreal injections as mode of drug administration. Coupling CD to gold nanoparticles allowed us to trace its intracellular location. We report that CD enters the endosomal-lysosomal system of neurons in vivo and enables the release of lipid-laden lamellar inclusions, which are then removed from the extracellular space by specific types of glial cells. Our data suggest that CD induces a concerted action of neurons and glial cells to restore lipid homeostasis in the central nervous system.


Assuntos
Colesterol/metabolismo , Ciclodextrinas/farmacologia , Neuroglia/efeitos dos fármacos , Neurônios/metabolismo , Proteína C1 de Niemann-Pick/genética , Animais , Ouro , Corpos de Inclusão/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/efeitos dos fármacos , Retina/efeitos dos fármacos
15.
Exp Eye Res ; 212: 108774, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34597676

RESUMO

The nee mouse model exhibits characteristic features of congenital glaucoma, a common cause of childhood blindness. The current study of nee mice had two components. First, the time course of neurodegeneration in nee retinal flat-mounts was studied over time using a retinal ganglion cell (RGC)-marker, BRN3A; a pan-nuclear marker, TO-PRO-3; and H&E staining. Based on segmentation of nuclei using ImageJ and RetFM-J, this analysis identified a rapid loss of BRN3A+ nuclei from 4 to 15 weeks of age, with the first statistically significant difference in average density compared to age-matched controls detected in 8-week-old cohorts (49% reduction in nee). Consistent with a model of glaucoma, no reductions in BRN3A- nuclei were detected, but the combined analysis indicated that some RGCs lost BRN3A marker expression prior to actual cell loss. These results have a practical application in the design of experiments using nee mice to study mechanisms or potential therapies for congenital glaucoma. The second component of the study pertains to a discovery-based analysis of the large amount of image data with 748,782 segmented retinal nuclei. Using the automatedly collected region of interest feature data captured by ImageJ, we tested whether RGC density of glaucomatous mice was significantly correlated to average nuclear area, perimeter, Feret diameter, or MinFeret diameter. These results pointed to two events influencing nuclear size. For variations in RGC density above approximately 3000 nuclei/mm2 apparent spreading was observed, in which BRN3A- nuclei-regardless of genotype-became slightly larger as RGC density decreased. This same spreading occurred in BRN3A+ nuclei of wild-type mice. For variation in RGC density below 3000 nuclei/mm2, which only occurred in glaucomatous nee mutants, BRN3A+ nuclei became smaller as disease was progressively severe. These observations have relevance to defining RGCs of relatively higher sensitivity to glaucomatous cell death and the nuclear dynamics occurring during their demise.


Assuntos
Núcleo Celular/patologia , Glaucoma/patologia , Células Ganglionares da Retina/metabolismo , Tomografia de Coerência Óptica/métodos , Animais , Contagem de Células , Modelos Animais de Doenças , Glaucoma/congênito , Glaucoma/metabolismo , Camundongos , Camundongos Mutantes , Células Ganglionares da Retina/patologia
16.
Proc Natl Acad Sci U S A ; 115(51): E12083-E12090, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30509993

RESUMO

Synaptic inhibition controls a neuron's output via functionally distinct inputs at two subcellular compartments, the cell body and the dendrites. It is unclear whether the assembly of these distinct inhibitory inputs can be regulated independently by neurotransmission. In the mammalian retina, γ-aminobutyric acid (GABA) release from starburst amacrine cells (SACs) onto the dendrites of on-off direction-selective ganglion cells (ooDSGCs) is essential for directionally selective responses. We found that ooDSGCs also receive GABAergic input on their somata from other amacrine cells (ACs), including ACs containing the vasoactive intestinal peptide (VIP). When net GABAergic transmission is reduced, somatic, but not dendritic, GABAA receptor clusters on the ooDSGC increased in number and size. Correlative fluorescence imaging and serial electron microscopy revealed that these enlarged somatic receptor clusters are localized to synapses. By contrast, selectively blocking vesicular GABA release from either SACs or VIP ACs did not alter dendritic or somatic receptor distributions on the ooDSGCs, showing that neither SAC nor VIP AC GABA release alone is required for the development of inhibitory synapses in ooDSGCs. Furthermore, a reduction in net GABAergic transmission, but not a selective reduction from SACs, increased excitatory drive onto ooDSGCs. This increased excitation may drive a homeostatic increase in ooDSGC somatic GABAA receptors. Differential regulation of GABAA receptors on the ooDSGC's soma and dendrites could facilitate homeostatic control of the ooDSGC's output while enabling the assembly of the GABAergic connectivity underlying direction selectivity to be indifferent to altered transmission.


Assuntos
Células Ganglionares da Retina/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia , Células Ganglionares da Retina/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Ácido gama-Aminobutírico/metabolismo
17.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360929

RESUMO

Complexins (Cplxs) 1 to 4 are components of the presynaptic compartment of chemical synapses where they regulate important steps in synaptic vesicle exocytosis. In the retina, all four Cplxs are present, and while we know a lot about Cplxs 3 and 4, little is known about Cplxs 1 and 2. Here, we performed in situ hybridization experiments and bioinformatics and exploited Cplx 1 and Cplx 2 single-knockout mice combined with immunocytochemistry and light microscopy to characterize in detail the cell type and synapse-specific distribution of Cplx 1 and Cplx 2. We found that Cplx 2 and not Cplx 1 is the main isoform expressed in normal and displaced amacrine cells and ganglion cells in mouse retinae and that amacrine cells seem to operate with a single Cplx isoform at their conventional chemical synapses. Surprising was the finding that retinal function, determined with electroretinographic recordings, was altered in Cplx 1 but not Cplx 2 single-knockout mice. In summary, the results provide an important basis for future studies on the function of Cplxs 1 and 2 in the processing of visual signals in the mammalian retina.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Células Amácrinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras/metabolismo , Células Bipolares da Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Células Horizontais da Retina/metabolismo , Proteínas SNARE/metabolismo , Sinapses/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Células Cultivadas , Biologia Computacional/métodos , Eletrorretinografia/métodos , Feminino , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética
18.
J Neurosci ; 39(4): 627-650, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30459218

RESUMO

In the rod pathway of the mammalian retina, axon terminals of glutamatergic rod bipolar cells are presynaptic to AII and A17 amacrine cells in the inner plexiform layer. Recent evidence suggests that both amacrines express NMDA receptors, raising questions concerning molecular composition, localization, activation, and function of these receptors. Using dual patch-clamp recording from synaptically connected rod bipolar and AII or A17 amacrine cells in retinal slices from female rats, we found no evidence that NMDA receptors contribute to postsynaptic currents evoked in either amacrine. Instead, NMDA receptors on both amacrine cells were activated by ambient glutamate, and blocking glutamate uptake increased their level of activation. NMDA receptor activation also increased the frequency of GABAergic postsynaptic currents in rod bipolar cells, suggesting that NMDA receptors can drive release of GABA from A17 amacrines. A striking dichotomy was revealed by pharmacological and immunolabeling experiments, which found GluN2B-containing NMDA receptors on AII amacrines and GluN2A-containing NMDA receptors on A17 amacrines. Immunolabeling also revealed a clustered organization of NMDA receptors on both amacrines and a close spatial association between GluN2B subunits and connexin 36 on AII amacrines, suggesting that NMDA receptor modulation of gap junction coupling between these cells involves the GluN2B subunit. Using multiphoton Ca2+ imaging, we verified that activation of NMDA receptors evoked an increase of intracellular Ca2+ in dendrites of both amacrines. Our results suggest that AII and A17 amacrines express clustered, extrasynaptic NMDA receptors, with different and complementary subunits that are likely to contribute differentially to signal processing and plasticity.SIGNIFICANCE STATEMENT Glutamate is the most important excitatory neurotransmitter in the CNS, but not all glutamate receptors transmit fast excitatory signals at synapses. NMDA-type glutamate receptors act as voltage- and ligand-gated ion channels, with functional properties determined by their specific subunit composition. These receptors can be found at both synaptic and extrasynaptic sites on neurons, but the role of extrasynaptic NMDA receptors is unclear. Here, we demonstrate that retinal AII and A17 amacrine cells, postsynaptic partners at rod bipolar dyad synapses, express extrasynaptic (but not synaptic) NMDA receptors, with different and complementary GluN2 subunits. The localization of GluN2A-containing receptors to A17s and GluN2B-containing receptors to AIIs suggests a mechanism for differential modulation of excitability and signaling in this retinal microcircuit.


Assuntos
Células Amácrinas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Amácrinas/efeitos dos fármacos , Células Amácrinas/ultraestrutura , Animais , Cálcio/metabolismo , Conexinas/metabolismo , Dendritos/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Junções Comunicantes/efeitos dos fármacos , Técnicas In Vitro , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Células Bipolares da Retina/efeitos dos fármacos , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Proteína delta-2 de Junções Comunicantes
19.
J Neurochem ; 153(3): 390-412, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31550048

RESUMO

Retinal hypoxia triggers abnormal vessel growth and microvascular hyper-permeability in ischemic retinopathies. Whereas vascular endothelial growth factor A (VEGF-A) inhibitors significantly hinder disease progression, their benefits to retinal neurons remain poorly understood. Similar to humans, oxygen-induced retinopathy (OIR) mice exhibit severe retinal microvascular malformations and profound neuronal dysfunction. OIR mice are thus a phenocopy of human retinopathy of prematurity, and a proxy for investigating advanced stages of proliferative diabetic retinopathy. Hence, the OIR model offers an excellent platform for assessing morpho-functional responses of the ischemic retina to anti-angiogenic therapies. Using this model, we investigated the retinal responses to VEGF-Trap (Aflibercept), an anti-angiogenic agent recognizing ligands of VEGF receptors 1 and 2 that possesses regulatory approval for the treatment of neovascular age-related macular degeneration, macular edema secondary to retinal vein occlusion and diabetic macular edema. Our results indicate that Aflibercept not only reduces the severity of retinal microvascular aberrations but also significantly improves neuroretinal function. Aflibercept administration significantly enhanced light-responsiveness, as revealed by electroretinographic examinations, and led to increased numbers of dopaminergic amacrine cells. Additionally, retinal transcriptional profiling revealed the concerted regulation of both angiogenic and neuronal targets, including transcripts encoding subunits of transmitter receptors relevant to amacrine cell function. Thus, Aflibercept represents a promising therapeutic alternative for the treatment of further progressive ischemic retinal neurovasculopathies beyond the set of disease conditions for which it has regulatory approval. Cover Image for this issue: doi: 10.1111/jnc.14743.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Degeneração Retiniana/tratamento farmacológico , Vasos Retinianos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Neurônios Dopaminérgicos/patologia , Feminino , Isquemia/tratamento farmacológico , Isquemia/patologia , Masculino , Camundongos , Microvasos/patologia , Rede Nervosa/patologia , Proteínas Recombinantes de Fusão/farmacologia , Degeneração Retiniana/patologia , Vasos Retinianos/patologia , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/patologia
20.
Exp Eye Res ; 200: 108232, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32916159

RESUMO

NADPH oxidases (NOX) are activated in ischemic conditions leading to increases in reactive oxygen species (ROS) and neurotoxicity. The aim of the present study was to investigate the role of NOX in the development of retinal pathologies, associated with excitotoxicity and the evaluation of NOX inhibitors as putative therapeutic agents. Sprague-Dawley rats were used for the induction of the in vivo retinal model of (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide (AMPA) excitotoxicity. Rats were intravitreally administered with PBS, AMPA (42 nmoles) or AMPA + NOX inhibitors, VAS2870 (pan-NOX inhibitor, 10-6-10-4 M), ML171 (NOX1 inhibitor, 10-5, 10-4 M), and GLX7013114 (NOX4 inhibitor, 10-4 M). Immunohistochemical studies were performed using antibodies raised against nitrotyrosine, a ROS/oxidative stress marker, bNOS, a neuronal marker for nitric oxide synthase and the macro and microglia markers, glial fibrillary acidic protein and ionized calcium-binding adaptor molecule-1, respectively. VAS2870 and ML171 showed neuroprotective and anti-inflammatory actions reversing the AMPA induced reduction of bNOS expressing amacrine cells and attenuating macro/microglial activation. GLX7013114 (10-4 M) did not protect bNOS expressing amacrine cells, but it did attenuate the AMPA induced increase in nitrotyrosine positive cells and activation of glial cells. These results suggest that NOX1, NOX4 and possibly NOX2 (due to the actions of VAS2870) play an important role in the pathophysiology of the retina and that NOX inhibitors are putative neuroprotective and anti-inflammatory agents against retinal abnormalities caused by excitotoxicity.


Assuntos
Benzoxazóis/farmacologia , Isquemia/tratamento farmacológico , NADPH Oxidase 4/antagonistas & inibidores , Retina/metabolismo , Doenças Retinianas/tratamento farmacológico , Triazóis/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Isquemia/induzido quimicamente , Isquemia/metabolismo , Masculino , Microglia/metabolismo , NADPH Oxidase 4/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa