Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36161489

RESUMO

To investigate correlation between the ameloblastin (Ambn) amino acid sequence and the emergence of prismatic enamel, a notable event in the evolution of ectodermal hard tissues, we analyzed Ambn sequences of 53 species for which enamel microstructures have been previously reported. We found that a potential amphipathic helix (AH) within the sequence encoded by Exon 5 of Ambn appeared in species with prismatic enamel, with a few exceptions. We studied this correlation by investigating synthetic peptides from different species. A blue shift in fluorescence spectroscopy suggested that the peptides derived from mammalian Ambn interacted with liposomes. A downward shift at 222 nm in circular dichroism spectroscopy of the peptides in the presence of liposomes suggested that the peptides of mammals with prismatic enamel underwent a transition from disordered to helical structure. The peptides of species without prismatic enamel did not show similar secondary structural changes in the presence of liposomes. Peptides of mammals with prismatic enamel caused liposome leakage and inhibited LS8 and ALC cell spreading regulated by full-length Ambn. RT-PCR showed that AH is involved in Ambn's regulation of cell polarization genes: Vangl2, Vangl1, Prickle1, ROCK1, ROCK2, and Par3. Our comprehensive sequence analysis clearly demonstrates that AH motif is closely related to the emergence of enamel prismatic structure, providing insight into the evolution of complex enamel microstructure. We speculate that the AH motif evolved in mammals to interact with cell membrane, triggering signaling pathways required for specific changes in cell morphology associated with the formation of enamel prismatic structure.


Assuntos
Lipossomos , Mamíferos , Animais , Sequência de Aminoácidos , Éxons
2.
J Exp Zool B Mol Dev Evol ; 340(7): 455-468, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36464775

RESUMO

Gars and bichirs develop scales and teeth with ancient actinopterygian characteristics. Their scale surface and tooth collar are covered with enamel, also known as ganoin, whereas the tooth cap is equipped with an enamel-like tissue, acrodin. Here, we investigated the formation and mineralization of the ganoin and acrodin matrices in spotted gar, and the evolution of the scpp5, ameloblastin (ambn), and enamelin (enam) genes, which encode matrix proteins of ganoin. Results suggest that, in bichirs and gars, all these genes retain structural characteristics of their orthologs in stem actinopterygians, presumably reflecting the presence of ganoin on scales and teeth. During scale formation, Scpp5 and Enam were initially found in the incipient ganoin matrix and the underlying collagen matrix, whereas Ambn was detected mostly in a surface region of the well-developed ganoin matrix. Although collagen is the principal acrodin matrix protein, Scpp5 was detected within the matrix. Similarities in timings of mineralization and the secretion of Scpp5 suggest that acrodin evolved by the loss of the matrix secretory stage of ganoin formation: dentin formation is immediately followed by the maturation stage. The late onset of Ambn secretion during ganoin formation implies that Ambn is not essential for mineral ribbon formation, the hallmark of the enamel matrix. Furthermore, Scpp5 resembles amelogenin that is not important for the initial formation of mineral ribbons in mammals. It is thus likely that the evolution of ENAM was vital to the origin of the unique mineralization process of the enamel matrix.


Assuntos
Proteínas do Esmalte Dentário , Dente , Animais , Peixes/genética , Amelogenina/genética , Amelogenina/metabolismo , Minerais , Colágeno , Proteínas do Esmalte Dentário/genética , Mamíferos
3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834897

RESUMO

The enamel matrix protein Ameloblastin (Ambn) has critical physiological functions, including regulation of mineral formation, cell differentiation, and cell-matrix adhesion. We investigated localized structural changes in Ambn during its interactions with its targets. We performed biophysical assays and used liposomes as a cell membrane model. The xAB2N and AB2 peptides were rationally designed to encompass regions of Ambn that contained self-assembly and helix-containing membrane-binding motifs. Electron paramagnetic resonance (EPR) on spin-labeled peptides showed localized structural gains in the presence of liposomes, amelogenin (Amel), and Ambn. Vesicle clearance and leakage assays indicated that peptide-membrane interactions were independent from peptide self-association. Tryptophan fluorescence and EPR showed competition between Ambn-Amel and Ambn-membrane interactions. We demonstrate localized structural changes in Ambn upon interaction with different targets via a multitargeting domain, spanning residues 57 to 90 of mouse Ambn. Structural changes of Ambn following its interaction with different targets have relevant implications for the multifunctionality of Ambn in enamel formation.


Assuntos
Proteínas do Esmalte Dentário , Lipossomos , Animais , Camundongos , Amelogenina/metabolismo
4.
Protein Expr Purif ; 198: 106133, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750297

RESUMO

Ameloblastin (Ambn) is an intrinsically disordered protein (IDP) with a specific function of forming heterogenous homooligomers. The oligomeric function is led through a specific sequence encoded by exon 5 of Ambn. Due to the IDP character of Ambn to form oligomers, protein purification is subject to many challenges. Human ameloblastin (AMBN) and its two isoforms, I and II have already been purified as a recombinant protein in a bacterial expression system and functionally characterized in vitro. However, here we present a new purification protocol for the production of native AMBN in its original formation as a homooligomeric heterogeneous IDP. The purification process consists of three chromatographic steps utilizing His-tag and Twin Strep-tag affinity chromatography, along with size exclusion and reverse affinity chromatography. The presented workflow offers the production of AMBN in sufficient yield for in vitro protein characterizations and can be used to produce both AMBN isoforms I and II.


Assuntos
Proteínas do Esmalte Dentário , Proteínas Intrinsicamente Desordenadas , Humanos , Cromatografia de Afinidade/métodos , Éxons , Proteínas Recombinantes/biossíntese , Proteínas Intrinsicamente Desordenadas/biossíntese , Proteínas do Esmalte Dentário/biossíntese
5.
Biochem Biophys Res Commun ; 581: 89-95, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34662808

RESUMO

Tooth development involves the coordinated transcriptional regulation of extracellular matrix proteins produced by ameloblasts and odontoblasts. In this study, whole-genome ChIP-seq analysis was applied to identify the transcriptional regulatory gene targets of Sp6 in mesenchymal cells of the developing tooth. Bioinformatic analysis of a pool of Sp6 target peaks identified the consensus nine nucleotide binding DNA motif CTg/aTAATTA. Consistent with these findings, a number of enamel and dentin matrix genes including amelogenin (Amelx), ameloblastin (Ambn), enamelin (Enam) and dental sialophosphoprotein (Dspp), were identified to contain Sp6 target sequences. Sp6 peaks were also found in other important tooth genes including transcription factors (Dlx2, Dlx3, Dlx4, Dlx5, Sp6, Sp7, Pitx2, and Msx2) and extracellular matrix-related proteins (Col1a2, Col11a2, Halpn1). Unsupervised UMAP clustering of tooth single cell RNA-seq data confirmed the presence of Sp6 transcripts co-expressed with many of the identified target genes within ameloblasts and odontoblasts. Lastly, transcriptional reporter assays using promoter fragments from the Hapln1 and Sp6 gene itself revealed that Sp6 co-expression enhanced gene transcriptional activity. Taken together these results highlight that Sp6 is a major regulator of multiple extracellular matrix genes in the developing tooth.


Assuntos
Ameloblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Fatores de Transcrição Kruppel-Like/genética , Dente Molar/metabolismo , Odontoblastos/metabolismo , Odontogênese/genética , Ameloblastos/citologia , Amelogenina/genética , Amelogenina/metabolismo , Animais , Animais Recém-Nascidos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dente Molar/citologia , Dente Molar/crescimento & desenvolvimento , Odontoblastos/citologia , Regiões Promotoras Genéticas , Proteoglicanas/genética , Proteoglicanas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo
6.
J Biol Chem ; 294(48): 18475-18487, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31628189

RESUMO

A highly specialized cytoskeletal protein, keratin 75 (K75), expressed primarily in hair follicles, nail beds, and lingual papillae, was recently discovered in dental enamel, the most highly mineralized hard tissue in the human body. Among many questions this discovery poses, the fundamental question regarding the trafficking and secretion of this protein, which lacks a signal peptide, is of an utmost importance. Here, we present evidence that K75 is expressed during the secretory stage of enamel formation and is present in the forming enamel matrix. We further show that K75 is secreted together with major enamel matrix proteins amelogenin and ameloblastin, and it was detected in Golgi and the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) but not in rough ER (rER). Inhibition of ER-Golgi transport by brefeldin A did not affect the association of K75 with Golgi, whereas ameloblastin accumulated in rER, and its transport from rER into Golgi was disrupted. Together, these results indicate that K75, a cytosolic protein lacking a signal sequence, is secreted into the forming enamel matrix utilizing portions of the conventional ER-Golgi secretory pathway. To the best of our knowledge, this is the first study providing insights into mechanisms of keratin secretion.


Assuntos
Ameloblastos/metabolismo , Esmalte Dentário/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Queratina-6/metabolismo , Amelogenina/genética , Amelogenina/metabolismo , Animais , Antibacterianos , Brefeldina A/farmacologia , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Expressão Gênica , Humanos , Queratina-6/genética , Camundongos Endogâmicos C57BL , Transporte Proteico/efeitos dos fármacos , Ratos Sprague-Dawley
7.
Proc Natl Acad Sci U S A ; 114(9): E1641-E1650, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28196895

RESUMO

The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.


Assuntos
Motivos de Aminoácidos/fisiologia , Esmalte Dentário/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Amelogenina/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , Proteínas do Esmalte Dentário/metabolismo , Durapatita/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Masculino , Camundongos , Ligação Proteica/fisiologia
8.
Int J Mol Sci ; 21(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291486

RESUMO

Ameloblastin (Ambn) as an intrinsically disordered protein (IDP) stands for an important role in the formation of enamel-the hardest biomineralized tissue commonly formed in vertebrates. The human ameloblastin (AMBN) is expressed in two isoforms: full-length isoform I (AMBN ISO I) and isoform II (AMBN ISO II), which is about 15 amino acid residues shorter than AMBN ISO I. The significant feature of AMBN-its oligomerization ability-is enabled due to a specific sequence encoded by exon 5 present at the N-terminal part in both known isoforms. In this study, we characterized AMBN ISO I and AMBN ISO II by biochemical and biophysical methods to determine their common features and differences. We confirmed that both AMBN ISO I and AMBN ISO II form oligomers in in vitro conditions. Due to an important role of AMBN in biomineralization, we further addressed the calcium (Ca2+)-binding properties of AMBN ISO I and ISO II. The binding properties of AMBN to Ca2+ may explain the role of AMBN in biomineralization and more generally in Ca2+ homeostasis processes.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas do Esmalte Dentário/química , Humanos , Hidrodinâmica , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Biológicos , Ligação Proteica , Isoformas de Proteínas , Multimerização Proteica , Análise Espectral , Temperatura
9.
J Cell Physiol ; 234(2): 1745-1757, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30105896

RESUMO

Ameloblastin (Ambn) is an extracellular matrix protein and member of the family of enamel-related gene products. Like amelogenin, Ambn is mainly associated with tooth development, especially biomineralization of enamel. Previous studies have shown reductions in the skeletal dimensions of Ambn-deficient mice, suggesting that the protein also has effects on the differentiation of osteoblasts and/or osteoclasts. However, the specific pathways used by Ambn to influence osteoclast differentiation have yet to be identified. In the present study, two cellular models, one based on bone marrow cells and another on RAW264.7 cells, were used to examine the effects of Ambn on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. The results showed that Ambn suppresses osteoclast differentiation, cytoskeletal organization, and osteoclast function by the downregulation of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts, actin ring formation, and areas of pit resorption. The expression of the osteoclast-specific genes TRAP, MMP9, cathepsin K, and osteoclast stimulatory transmembrane protein (OC-STAMP) was abolished in the presence of Ambn, while that of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), the master regulatory factor of osteoclastogenesis, was also attenuated by the downregulation of c-Fos expression. In Ambn-induced RAW264.7 cells, phosphorylation of cAMP-response element-binding protein (CREB), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), but not extracellular signal-regulated kinase 1/2 (ERK1/2), was reduced. Calcium oscillation was also decreased in the presence of Ambn, suggesting its involvement in both RANKL-induced osteoclastogenesis and costimulatory signaling. B-lymphocyte-induced maturation protein-1 (Blimp1), a transcriptional repressor of negative regulators of osteoclastogenesis, was also downregulated by Ambn, resulting in the elevated expression of v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MafB), B-cell lymphoma 6 (Bcl6), and interferon regulatory factor-8 (Irf8). Taken together, these findings suggest that Ambn suppresses RANKL-induced osteoclastogenesis by modulating the NFATc1 axis.


Assuntos
Proteínas do Esmalte Dentário/farmacologia , Macrófagos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Animais , Sinalização do Cálcio , Diferenciação Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Regulação para Baixo , Macrófagos/metabolismo , Masculino , Camundongos , Osteoclastos/metabolismo , Células RAW 264.7
10.
J Exp Zool B Mol Dev Evol ; 332(5): 136-148, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31045323

RESUMO

The three major enamel matrix proteins (EMPs): amelogenin (AMEL), ameloblastin (AMBN), and enamelin (ENAM), are intrinsically linked to tooth development in tetrapods. However, reptiles and mammals exhibit significant differences in dental patterning and development, potentially affecting how EMPs evolve in each group. In most reptiles, teeth are replaced continuously throughout life, while mammals have reduced replacement to only one or two generations. Reptiles also form structurally simple, aprismatic enamel while mammalian enamel is composed of highly organized hydroxyapatite prisms. These differences, combined with reported low sequence homology in reptiles, led us to predict that reptiles may experience lower selection pressure on their EMPs as compared with mammals. However, we found that like mammals, reptile EMPs are under moderate purifying selection, with some differences evident between AMEL, AMBN, and ENAM. We also demonstrate that sequence homology in reptile EMPs is closely associated with divergence times, with more recently diverged lineages exhibiting high homology, along with strong phylogenetic signal. Lastly, despite sequence divergence, none of the reptile species in our study exhibited mutations consistent with diseases that cause degeneration of enamel (e.g. amelogenesis imperfecta). Despite short tooth retention time and simplicity in enamel structure, reptile EMPs still exhibit purifying selection required to form durable enamel.


Assuntos
Proteínas do Esmalte Dentário/genética , Esmalte Dentário/química , Répteis , Amelogenina , Sequência de Aminoácidos , Animais , Proteínas do Esmalte Dentário/química , Evolução Molecular , Filogenia
11.
J Cell Physiol ; 233(2): 1512-1522, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28574578

RESUMO

Differentiated ameloblasts secret enamel matrix proteins such as amelogenin, ameloblastin, and enamelin. Expression levels of these proteins are regulated by various factors. To find a new regulatory factor for ameloblast differentiation, we performed 2D-PAGE analysis using mouse ameloblast lineage cell line (mALCs) cultured with mineralizing medium. Of identified proteins, family with sequence similarity 50 member A (Fam50a) was significantly increased during differentiation of mALCs. Fam50a protein was also highly expressed in secretory ameloblasts of mouse tooth germs. In mALCs cultures, forced expression of Fam50a up-regulated the expression of enamel matrix protein genes such as amelogenin, ameloblastin, and enamelin. In addition, up-regulation of Fam50a also increased ALP activity and mineralized nodule formation in a dose-dependent manner. In contrast, knockdown of Fam50a decreased expression levels of enamel matrix protein genes, ALP activity, and mineralized nodule formation. By fluorescence microscopy, endogenous Fam50a protein was found to be localized to the nucleus of ameloblasts. In addition, Fam50a synergistically increased Ambn transactivation by Runx2. Moreover, Fam50a increased binding affinity of Runx2 to Ambn promoter by physically interacting with Runx2. Taken together, these results suggest Fam50a might be a new positive regulator of ameloblast differentiation.


Assuntos
Ameloblastos/metabolismo , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dente Molar/metabolismo , Proteínas Nucleares/metabolismo , Fosfatase Alcalina/metabolismo , Amelogenina/genética , Amelogenina/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/genética , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA , Transdução de Sinais , Fatores de Tempo , Calcificação de Dente , Transcrição Gênica , Ativação Transcricional , Transfecção
12.
Oral Dis ; 24(8): 1538-1544, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29974993

RESUMO

OBJECTIVE: To analyse the immunohistochemical expression of ameloblastin in the bell stage of tooth germ and compare with ameloblastoma to determine the level of differentiation of tumour cells. STUDY DESIGN: This study included eleven human tooth germs with four in the early and seven in the late bell stage, and six selected archival tissue samples of ameloblastomas were studied using haematoxylin and eosin, Masson's trichrome and ameloblastin. RESULTS: All eleven tooth germs reacted positively to ameloblastin with a characteristic inverted and sequential pattern of expression in the acellular zone of the dental papilla and enamel organ. Of the six cases of ameloblastoma, five cases showed a variable level of expression of ameloblastin in the tumour cells, whereas in one case, ameloblastin was negative in the tumour cells but positive in the stromal fibrous tissue collar. CONCLUSION: Expression of ameloblastin in human tooth germ is related to differentiation and mineralization, and it correlates with the state of differentiation of the tumour cells in ameloblastoma.


Assuntos
Ameloblastoma/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Papila Dentária/metabolismo , Órgão do Esmalte/metabolismo , Neoplasias Maxilomandibulares/metabolismo , Ameloblastoma/patologia , Diferenciação Celular , Humanos , Imuno-Histoquímica , Neoplasias Maxilomandibulares/patologia
13.
J Clin Pediatr Dent ; 42(1): 50-54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28937892

RESUMO

This case compared gene-expression between a new type of idiopathic gingival fibromatosis (IGF) and normal gingiva, to clarify the nature of the gingival overgrowth and dental anomaly. A 6-year-old girl with generalized gingival overgrowth and root deformations was diagnosed with IGF. Gene expression profiles were compared between normal gingiva (N=9) and one IGF gingiva using cDNA microarray. Genes related to regulation of cell proliferation and proteolytic degradation were expressed strongly in IGF. MMP-13 and MMP-12 expression were 120 times and 96 times lower in IGF, respectively, whereas AMBN expression was 79 times higher. RT-PCR and immunohistochemical staining supported the microarray results. Reduced proteolytic activity due to low MMP-13 and MMP-12 expression appears to be a potential mechanism for gingival overgrowth. Genetic investigations, such as expression levels of MMP-13, MMP-12, and AMBN, may enable classification of a new syndrome characterized by gingival enlargement with abnormal root development.


Assuntos
Proteínas do Esmalte Dentário/genética , Fibromatose Gengival/genética , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 13 da Matriz/genética , Criança , Feminino , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
14.
J Cell Biochem ; 118(10): 3308-3317, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28295583

RESUMO

Ameloblastin (AMBN) is an enamel matrix protein that has various biological functions such as healing dental pulp and repairing bone fractures. In the present study, we clarified the effect of AMBN on the expression of an inflammatory cytokine, interleukin-1ß (IL-1ß) in lipopolysaccharide (LPS)-treated human macrophages. Real-time RT-PCR analysis showed that LPS treatment upregulated expression of the IL-1ß gene in U937 cells. Interestingly, AMBN significantly enhanced IL-1ß gene expression in LPS-treated U937 cells as well as the secretion of mature IL-1ß into culture supernatants by these cells. AMBN also activated caspase-1 p10 expression in LPS-treated U937 cells. Pretreatment with a caspase-1 inhibitor, Z-YVAD-FMK, downregulated the mature IL-1ß expression enhanced by AMBN treatment in LPS-treated U937 cells. A co-immunoprecipitation assay showed that treatment with LPS and AMBN upregulated toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) interactions, but there was no significant difference compared with LPS treatment alone in U937 cells. In contrast, western blot analysis revealed that AMBN remarkably prolonged the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinase (MAPK) family. An ERK1/2-selective inhibitor, U0126, suppressed expression of the IL-1ß gene as well as its protein expression in U937 cells treated with LPS and AMBN. Taken together, these results indicate that AMBN enhances IL-1ß production in LPS-treated U937 cells through ERK1/2 phosphorylation and caspase-1 activation, suggesting that AMBN upregulates the inflammatory response in human macrophages and plays an important role in innate immunity. J. Cell. Biochem. 118: 3308-3317, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Imunidade Inata , Interleucina-1beta/biossíntese , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Regulação para Cima , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/patologia , Células U937
15.
Biochem Biophys Res Commun ; 485(3): 621-626, 2017 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-28161637

RESUMO

Ameloblastin (Ambn) and enamelin (Enam) play a pivotal role in enamel mineralization. Previous studies have demonstrated that these enamel-related gene products also affect bone growth and remodeling; however, the underlying mechanisms have not been elucidated. In the present study, we examined the effects of Ambn and Enam on the receptor activator of nuclear factor kappa-B ligand (RANKL) expression induced with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and dexamethasone (DEX) on mouse bone marrow stromal cell line ST2 cells. We then verified the effect of Ambn and Enam on osteoclastogenesis. We found that pretreatment with recombinant human Ambn (rhAmbn) and recombinant human Enam (rhEnam) remarkably suppressed RANKL mRNA and protein expression induced with 1,25(OH)2D3 and DEX. Interestingly, rhAmbn and rhEnam attenuated the phosphorylation of mitogen-activated protein kinases (MAPK), including ERK1/2, JNK, and p38 in ST2 cells stimulated with 1,25(OH)2D3 and DEX. Moreover, pretreatment with specific inhibitors of ERK1/2 and p38, but not JNK, blocked RANKL mRNA and protein expression. Cell co-culture results showed that rhAmbn and rhEnam downregulated mouse bone marrow cell differentiation into osteoclasts induced with 1,25(OH)2D3 and DEX-stimulated ST2 cells. These results suggest that Ambn and Enam may indirectly suppress RANKL-induced osteoclastogenesis via downregulation of p38 and ERK1/2 MAPK signaling pathways in bone marrow stromal cells.


Assuntos
Proteínas do Esmalte Dentário/farmacologia , Proteínas da Matriz Extracelular/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Ligante RANK/metabolismo , Animais , Western Blotting , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Calcitriol/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Proteínas do Esmalte Dentário/genética , Dexametasona/farmacologia , Proteínas da Matriz Extracelular/genética , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ligante RANK/genética , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitaminas/farmacologia
16.
Odontology ; 105(1): 116-121, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27262724

RESUMO

The aim of this study was to examine the effect of 16 amino acids of the N-terminal region of human ameloblastin (16N-AMBN) synthetic peptide, on the proliferation and differentiation of MC3T3-E1 cells and bone regeneration. While 16N-AMBN did not affect the proliferation, it induced mRNA expression of type I collagen, alkaline phosphatase (ALP), bone sialoprotein, and osteocalcin. 16N-AMBN also stimulated ALP activity and promoted mineralized nodule formation. On the other hand, these activities were inhibited by anti-16N-AMBN antibody. Treatment of rat calvarial bone defects with 16N-AMBN resulted in almost complete healing compared to that of the control treatments. These findings suggest that 16N-AMBN may be applicable for regeneration therapy of bone defects.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Proteínas do Esmalte Dentário/fisiologia , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Humanos , Sialoproteína de Ligação à Integrina/metabolismo , Osteocalcina/metabolismo , Ratos , Crânio/cirurgia , Cicatrização/efeitos dos fármacos
17.
J Biol Chem ; 290(34): 20661-20673, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26070558

RESUMO

Enamel is a bioceramic tissue composed of thousands of hydroxyapatite crystallites aligned in parallel within boundaries fabricated by a single ameloblast cell. Enamel is the hardest tissue in the vertebrate body; however, it starts development as a self-organizing assembly of matrix proteins that control crystallite habit. Here, we examine ameloblastin, a protein that is initially distributed uniformly across the cell boundary but redistributes to the lateral margins of the extracellular matrix following secretion thus producing cell-defined boundaries within the matrix and the mineral phase. The yeast two-hybrid assay identified that proteasome subunit α type 3 (Psma3) interacts with ameloblastin. Confocal microscopy confirmed Psma3 co-distribution with ameloblastin at the ameloblast secretory end piece. Co-immunoprecipitation assay of mouse ameloblast cell lysates with either ameloblastin or Psma3 antibody identified each reciprocal protein partner. Protein engineering demonstrated that only the ameloblastin C terminus interacts with Psma3. We show that 20S proteasome digestion of ameloblastin in vitro generates an N-terminal cleavage fragment consistent with the in vivo pattern of ameloblastin distribution. These findings suggest a novel pathway participating in control of protein distribution within the extracellular space that serves to regulate the protein-mineral interactions essential to biomineralization.


Assuntos
Ameloblastos/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Esmalte Dentário/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Incisivo/metabolismo , Glicoproteínas de Membrana/metabolismo , Odontogênese/genética , Ameloblastos/citologia , Animais , Citoplasma/química , Citoplasma/metabolismo , Esmalte Dentário/citologia , Esmalte Dentário/crescimento & desenvolvimento , Proteínas do Esmalte Dentário/genética , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Glutamato Carboxipeptidase II/genética , Humanos , Incisivo/citologia , Incisivo/crescimento & desenvolvimento , Glicoproteínas de Membrana/genética , Camundongos , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
18.
J Biol Chem ; 288(31): 22333-45, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23782691

RESUMO

Tooth enamel, the hardest tissue in the body, is formed by the evolutionarily highly conserved biomineralization process that is controlled by extracellular matrix proteins. The intrinsically disordered matrix protein ameloblastin (AMBN) is the most abundant nonamelogenin protein of the developing enamel and a key element for correct enamel formation. AMBN was suggested to be a cell adhesion molecule that regulates proliferation and differentiation of ameloblasts. Nevertheless, detailed structural and functional studies on AMBN have been substantially limited by the paucity of the purified nondegraded protein. With this study, we have developed a procedure for production of a highly purified form of recombinant human AMBN in quantities that allowed its structural characterization. Using size exclusion chromatography, analytical ultracentrifugation, transmission electron, and atomic force microscopy techniques, we show that AMBN self-associates into ribbon-like supramolecular structures with average widths and thicknesses of 18 and 0.34 nm, respectively. The AMBN ribbons exhibited lengths ranging from tens to hundreds of nm. Deletion analysis and NMR spectroscopy revealed that an N-terminal segment encoded by exon 5 comprises two short independently structured regions and plays a key role in self-assembly of AMBN.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Éxons , Cromatografia em Gel , Dicroísmo Circular , Proteínas do Esmalte Dentário/química , Proteínas do Esmalte Dentário/genética , Eletroforese em Gel de Poliacrilamida , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Connect Tissue Res ; 55 Suppl 1: 117-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158194

RESUMO

Ameloblastin (AMBN), a member of the enamel matrix protein family, has been recently identified as integral part of the skeleton beyond the enamel. However, the specific role of endogenous AMBN in bone tissue is not fully elucidated. This study aims at investigating mRNA expression of AMBN in wild-type mice in different bone sites from early embryonic to adult stages. AMBN mRNA expression started at pre-dental stages in mouse embryos (E10.5) in both head and body parts. Using laser capture microdissection on 3-day-old mice, we showed an unambiguous mRNA expression of AMBN in extra-dental tissue (mandible bone). Screening of AMBN mRNA expression in adult mice (15-week-old) revealed that mRNA expression of AMBN varied according to the bone site; a higher mRNA levels in mandibular and frontal bone compartments were observed when compared to tibia and occipital bones. These results strongly suggest that AMBN expression may be regulated in a site-specific manner and identify AMBN as a putative in vivo marker of the site-specific fingerprint of bone organs.


Assuntos
Osso e Ossos/metabolismo , Proliferação de Células/fisiologia , Proteínas do Esmalte Dentário/metabolismo , Osteogênese/fisiologia , Animais , Animais Recém-Nascidos , Biomarcadores/análise , Osso e Ossos/citologia , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos
20.
Connect Tissue Res ; 55 Suppl 1: 38-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158178

RESUMO

In enamel formation, the deposition of minerals as crystallites starts when the mineralization front first forms at the start of the secretory stage. During maturation, the enamel layer accumulates significant amounts of new mineral as the crystallites grow in volume. Inversely related to mineral gain is loss of protein and water from the forming enamel. Both ameloblastin (Ambn) and enamelin are essential components for formation of a functional enamel layer. The aim of this study was to quantify the proportion of mineral and non-mineral material present in developing enamel relative to Ambn concentration using Ambn mutant mice mated with others overexpressing full-length Ambn from the mouse amelogenin promoter at lower (+), similar (++) or higher (+++) concentration than normal. Mandibular incisors (age: 7 weeks, n = 8) were imaged by micro-computed tomography and the enamel was analyzed from the apical region to the incisal edge in sequential 1.0 mm volumes of interest. Mineral density was determined using a series of hydroxyapatite (HA) phantoms to calibrate enamel density measurements. At the site where the mandibular incisor emerged into the oral cavity, the enamel volume, mineral weight, and mineral density were reduced when Tg Ambn was expressed at lower or higher levels than normal. While in wild-type the % mineral was >95%, it was negligible in Ambn-/-, 22.3% in Ambn-/-, Tg(+), 75.4% in Ambn-/-, Tg(++), and 45.2% in Ambn-/-, Tg(+++). These results document that the deposition of mineral and removal of non-mineral components are both very sensitive to expressed Ambn concentrations.


Assuntos
Amelogênese/genética , Amelogenina/ultraestrutura , Esmalte Dentário/ultraestrutura , Amelogenina/genética , Animais , Densidade Óssea , Incisivo/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa