RESUMO
Trace Amine Associated Receptor 1 (TAAR1) is a novel pharmaceutical target under investigation for the treatment of several neuropsychiatric conditions. TAAR1 single nucleotide variants (SNV) have been found in patients with schizophrenia and metabolic disorders. However, the frequency of variants in geographically diverse populations and the functional effects of such variants are unknown. In this study, we aimed to characterise the distribution of TAAR1 SNVs in five different WHO regions using the Database of Genotypes and Phenotypes (dbGaP) and conducted a critical computational analysis using available TAAR1 structural data to identify SNVs affecting ligand binding and/or functional regions. Our analysis shows 19 orthosteric, 9 signalling and 16 micro-switch SNVs hypothesised to critically influence the agonist induced TAAR1 activation. These SNVs may non-proportionally influence populations from discrete regions and differentially influence the activity of TAAR1-targeting therapeutics in genetically and geographically diverse populations. Notably, our dataset presented with orthosteric SNVs D1033.32N (found only in the South-East Asian Region and Western Pacific Region) and T1945.42A (found only in South-East Asian Region), and 2 signalling SNVs (V1253.54A/T2526.36A, found in African Region and commonly, respectively), all of which have previously demonstrated to influence ligand induced functions of TAAR1. Furthermore, bioinformatics analysis using SIFT4G, MutationTaster 2, PROVEAN and MutationAssessor predicted all 16 micro-switch SNVs are damaging and may further influence the agonist activation of TAAR1, thereby possibly impacting upon clinical outcomes. Understanding the genetic basis of TAAR1 function and the impact of common mutations within clinical populations is important for the safe and effective utilisation of novel and existing pharmacotherapies.
Assuntos
Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Polimorfismo de Nucleotídeo Único/genética , Relação Estrutura-Atividade , Genótipo , Ligantes , Receptores Associados a Traços de AminaRESUMO
Aminergic receptors are G protein-coupled receptors (GPCRs) that transduce signals from small endogenous biogenic amines to regulate intracellular signaling pathways. Agonist binding in the ligand binding pocket on the extracellular side opens and prepares a cavity on the intracellular face of the receptors to interact with and activate G proteins and ß-arrestins. Here, by reviewing and analyzing all available aminergic receptor structures, we seek to identify activation-related conformational changes that are independent of the specific scaffold of the bound agonist, which we define as "activation conformational changes" (ACCs). While some common intracellular ACCs have been well-documented, identifying common extracellular ACCs, including those in the ligand binding pocket, is complicated by local adjustments to different ligand scaffolds. Our analysis shows no common ACCs at the extracellular ends of the transmembrane helices. Furthermore, the restricted access to the ligand binding pocket identified previously in some receptors is not universal. Notably, the Trp6.48 toggle switch and the Pro5.50-Ile3.40-Phe6.44 (PIF) motif at the bottom of the ligand binding pocket have previously been proposed to mediate the conformational consequences of ligand binding to the intracellular side of the receptors. Our analysis shows that common ACCs in the ligand binding pocket are associated with the PIF motif and nearby residues, including Trp6.48, but fails to support a shared rotamer toggle associated with activation. However, we identify two common rearrangements between the extracellular and middle subsegments, and propose a novel "activation switch" motif common to all aminergic receptors. This motif includes the middle subsegments of transmembrane helices 3, 5, and 6 and integrates both the PIF motif and Trp6.48.
Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Conformação Proteica , Ligantes , Receptores Acoplados a Proteínas G/química , Proteínas de Ligação ao GTP/metabolismo , Sítios de LigaçãoRESUMO
Currently, G protein-coupled receptors are the targets with the highest number of drugs in many therapeutic areas. Fluorination has become a common strategy in designing highly active biological compounds, as evidenced by the steadily increasing number of newly approved fluorine-containing drugs. Herein, we identified in the ChEMBL database and analysed 1554 target-based FSAR sets (non-fluorinated compounds and their fluorinated analogues) comprising 966 unique non-fluorinated and 2457 unique fluorinated compounds active against 33 different aminergic GPCRs. Although a relatively small number of activity cliffs (defined as a pair of structurally similar compounds showing significant differences of activity -ΔpPot > 1.7) was found in FSAR sets, it is clear that appropriately introduced fluorine can increase ligand potency more than 50-fold. The analysis of matched molecular pairs (MMPs) networks indicated that the fluorination of the aromatic ring showed no clear trend towards a positive or negative effect on affinity; however, a favourable site for a positive potency effect of fluorination was the ortho position. Fluorination of aliphatic fragments more often led to a decrease in biological activity. The results may constitute the rules of thumb for fluorination of aminergic receptor ligands and provide insights into the role of fluorine substitutions in medicinal chemistry.