Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biosci Biotechnol Biochem ; 87(8): 819-824, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37279892

RESUMO

Arctigenin (ARG) has potent antifatigue activity, but its clinical application has been restricted for its poor water solubility. In this study, seven ARG derivatives containing different amino acids coupled via an ethoxy linker were synthesized, and tested for their solubility, as well as activities to improve exercise performance in mice. All of the derivatives showed improved solubility compared to that of ARG. Derivative Z-A-6 exhibited the highest activity, showing that the mice ran a 4.88-fold greater distance in the running wheel test and swam a 2.86-fold greater time in the swimming test than those in the blank control group. Z-A-6 treatment increased the plasma superoxide dismutase and catalase concentrations as well as reduced lactic acid and blood urea nitrogen accumulation during exercise. Z-A-6 treatment enhanced the phosphorylation of adenosine monophosphate-activated protein kinase, and no acute toxicity was observed. The results will contribute to the development of potential antifatigue agents.


Assuntos
Furanos , Lignanas , Camundongos , Animais , Furanos/farmacologia , Furanos/química , Lignanas/farmacologia , Lignanas/química , Superóxido Dismutase/metabolismo , Natação
2.
J Appl Toxicol ; 43(3): 446-457, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36101970

RESUMO

The amino acid derivative reactivity assay (ADRA), an alternative method for testing skin sensitization, has been established based on the molar concentration approach. However, the additional development of gravimetric concentration and fluorescence detection methods has expanded its range of application to mixtures, which cannot be evaluated using the conventional testing method, the direct peptide reactivity assay (DPRA). Although polymers are generally treated as mixtures, there have been no reports of actual polymer evaluations using alternative methods owing to their insolubility. Therefore, in this study, we evaluated skin sensitization potential of polymers, which is difficult to predict, using ADRA. As polymers have molecular weights ranging from several thousand to more than several tens of thousand Daltons, they are unlikely to cause skin sensitization due to their extremely low penetration into the skin, according to the 500-Da rule. However, if highly reactive functional groups remain at the ends or side chains of polymers, relatively low-molecular-weight polymer components may penetrate the skin to cause sensitization. Polymers can be roughly classified into three major types based on the features of their constituent monomers; we investigated the sensitization capacity of each type of polymer. Polymers with alert sensitization structures at their ends were classified as skin sensitizers, whereas those with no residual reactive groups were classified as nonsensitizers. Although polymers with a glycidyl group need to be evaluated carefully, we concluded that ADRA (0.5 mg/ml) is generally sufficient for polymer hazard assessment.


Assuntos
Compostos Orgânicos , Pele , Animais , Pele/metabolismo , Peptídeos/química , Bioensaio/métodos , Aminoácidos/análise , Alternativas aos Testes com Animais/métodos
3.
J Appl Toxicol ; 42(2): 318-333, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855227

RESUMO

Amino acid derivative reactivity assay (ADRA) for skin sensitization was adopted as an alternative method in the 2019 OECD Guideline for the Testing of Chemicals (OECD TG 442C). The molar ratio of the nucleophilic reagent to the test chemicals in the reaction solution was set to 1:50. Imamura et al. reported that changing this molar ratio from 1:50 to 1:200 reduced in false negatives and improved prediction accuracy. Hence, a ring study using ADRA with 4 mM of a test chemical solution (ADRA, 4 mM) was conducted at five different laboratories to verify within- and between-laboratory reproducibilities (WLR and BLR, respectively). In this study, we investigated the WLR and BLR using 14 test chemicals grouped into three classes: (1) eight proficiency substances, (2) four test chemicals that showed false negatives in the ADRA with 1 mM test chemical solution (ADRA, 1 mM), but correctly positive in ADRA (4 mM), and (3) current positive control (phenylacetaldehyde) and a new additional positive control (squaric acid diethyl ester). The results showed 100% reproducibility and 100% accuracy for skin sensitization. Hence, it is clear that the ADRA (4 mM) is an excellent test method in contrast to the currently used ADRA (1 mM). We plan to resubmit the ADRA (4 mM) test method to the OECD Test Guideline Group in the near future so that OECD TG 442C could be revised for the convenience and benefit of many ADRA users.


Assuntos
Aminoácidos/uso terapêutico , Alternativas aos Testes com Animais/estatística & dados numéricos , Bioensaio/estatística & dados numéricos , Compostos Orgânicos/toxicidade , Pele/efeitos dos fármacos , Laboratórios , Reprodutibilidade dos Testes
4.
J Appl Toxicol ; 42(7): 1159-1167, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34993977

RESUMO

The amino acid derivative reactivity assay (ADRA) is an alternative method for evaluating key event 1 (KE-1) in the skin sensitization mechanism included in OECD TG442C (OECD, 2021). Recently, we found that ADRA with a 4-mM test chemical solution had a higher accuracy than the original ADRA (1 mM). However, ADRA (4 mM) has yet to be evaluated using integrated approaches to testing and assessment (IATA), a combination of alternative methods for evaluating KE. In this study, the sensitization potency of three defined approaches (DAs) using ADRA (4 mM) as KE-1 was predicted and compared with those of two additional ADRAs or direct peptide reactivity assay (DPRA): (i) "2 out of 3" approach, (ii) "3 out of 3" approach, and (iii) integrated testing strategy (ITS). In the hazard identification of chemical sensitizers, the accuracy of human data and local lymph node assay (LLNA) remained almost unchanged among the three approaches evaluated. Potency classifications for sensitization were predicted with the LLNA and human data sets using ITS. The potency classifications for the sensitization potency prediction accuracy of LLNA data using any alternative method were almost unchanged, at approximately 70%, and those with ITS were not significantly different. When ITS was performed using DPRA, the prediction accuracy was approximately 73% for human data, which was similar to that of the LLNA data; however, the accuracy tended to increase for all ADRA methods. In particular, when ITS was performed using ADRA (4 mM), the prediction accuracy was approximately 78%, which proved to be a practical level.


Assuntos
Alternativas aos Testes com Animais , Dermatite Alérgica de Contato , Aminoácidos/química , Alternativas aos Testes com Animais/métodos , Animais , Bioensaio/métodos , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/metabolismo , Humanos , Ensaio Local de Linfonodo , Compostos Orgânicos , Peptídeos/química , Pele/metabolismo
5.
J Appl Toxicol ; 42(6): 1078-1090, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35043433

RESUMO

The amino acid derivative reactivity assay (ADRA) is an in chemico alternative assay for skin sensitization listed in OECD test guideline 442C. ADRA evaluates the reactivity of sensitizers to proteins, which is key event 1 in the skin sensitization adverse outcome pathway. Although the current key event 1 evaluation method is a simple assay that evaluates nucleophile and test chemical reactivity, mixtures of unknown molecular weights cannot be evaluated because a constant molar ratio between the nucleophile and test chemical is necessary. In addition, because the nucleophile is quantified by HPLC, the frequency of co-eluting the test chemical and nucleophile increases when measuring multi-component mixtures. To solve these issues, test conditions have been developed using a 0.5 mg/mL test chemical solution and fluorescence-based detection. Since the practicality of these methods has not been substantiated, a validation test to confirm reproducibility was conducted in this study. The 10 proficiency substances listed in the ADRA guidelines were tested three times at five different laboratories. The results of both within- and between-laboratory reproducibility were 100%, and the results of ultraviolet- and fluorescence-based measurements were also consistent. In addition to the proficiency substances, a new positive control, squaric acid diethyl ester, was tested three times at the five laboratories. The results showed high reproducibility with N-(2-(1-naphthyl)acetyl)-l-cysteine depletion of 37%-52% and α-N-(2-(1-naphthyl)acetyl)-l-lysine depletion of 99%-100%. Thus, high reproducibility was confirmed in both evaluations of the 0.5 mg/mL test chemical and the fluorescence-based measurements, validating the practicability of these methods.


Assuntos
Alternativas aos Testes com Animais , Laboratórios , Alternativas aos Testes com Animais/métodos , Animais , Bioensaio/métodos , Cisteína/química , Reprodutibilidade dos Testes , Pele/metabolismo
6.
J Appl Toxicol ; 41(2): 303-329, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33124715

RESUMO

The Amino acid Derivative Reactivity Assay (ADRA) is a convenient and effective in chemico test method for assessing covalent binding of test chemicals with protein-derived nucleophilic reagents as a means of predicting skin sensitization potential. Although the original molar-concentration approach to ADRA testing was not suitable for testing multiconstituent substances of an unknown composition, a weight-concentration approach that is suitable for such substances was developed, which also led to the realization that test chemical solutions prepared to molar concentrations higher than the original 1 mM would reduce false negative results as well as enhance predictive capacity. The present study determined an optimal molar-concentration that achieves even higher predictive capacity than the original ADRA. Eight chemicals that were false negatives when tested with 1 mM test chemical solutions were retested with test chemical solutions between 2 and 5 mM, which showed 4 mM to be the optimal molar-concentration for ADRA testing. When 82 chemicals used in the original development were retested with 4 mM test chemical solutions, false negative results were reduced by four. When an additional 85 chemicals used to evaluate the weight-concentration approach to ADRA were retested, the results essentially replicated those obtained with 0.5 mg/ml test chemical solutions and gave 10 fewer false negatives than original ADRA with 1 mM solutions. A comparison of these results for 136 chemicals showed that ADRA testing with 4 mM solutions achieved a four percentage point improvement in accuracy over original ADRA and a two percentage point improvement over DPRA testing.


Assuntos
Alérgenos/química , Alérgenos/toxicidade , Aminoácidos/análise , Alternativas aos Testes com Animais , Bioensaio/métodos , Dermatite Alérgica de Contato/diagnóstico , Pele/efeitos dos fármacos , Animais , Humanos , Valor Preditivo dos Testes
7.
J Appl Toxicol ; 41(10): 1634-1648, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33636015

RESUMO

The amino acid derivative reactivity assay (ADRA) is an in chemico alternative to animal testing that focuses on protein binding. The ADRA is a skin sensitization test that solves problems associated with the direct peptide reactivity assay. However, when utilizing the ADRA to evaluate highly hydrophobic substances with octanol/water partition coefficients (logKow) of >6, the test substances may not dissolve in the reaction solution, which can prevent the accurate assessment of skin sensitization. Therefore, we developed the ADRA-organic solvent (ADRA-OS) reaction system, which is a novel skin sensitization test that enables the assessment of highly hydrophobic substances with a logKow of >6. We discovered that the organic solvent ratio, the triethylamine concentration, and the ethylenediaminetetraacetic acid disodium salt dihydrate concentration participate in reactions with the nucleophile N-(2-(1-naphthyl)acetyl)-l-cysteine (NAC) and sensitizers that are used in ADRA and in stabilizing NAC. Thus, we determined the optimal reaction composition of the ADRA-OS according to L9 (33 ) orthogonal array experiments. Using this test, we assessed 14 types of highly hydrophobic substances. When we compared the results with ADRA, we found that ADRA-OS reaction system has high solubility for highly hydrophobic substances and that it has a high predictive capacity (sensitivity: 63%, specificity: 100%, accuracy: 79%). The implication of the results is that the novel ADRA-OS reaction system should provide a useful method for assessing the skin sensitization of highly hydrophobic substances with a logKow of >6.


Assuntos
Aminoácidos/metabolismo , Dermatite de Contato/diagnóstico , Interações Hidrofóbicas e Hidrofílicas , Nitrobenzenos/metabolismo , Nitrobenzenos/toxicidade , Pele/efeitos dos fármacos , Pele/metabolismo , Alternativas aos Testes com Animais/métodos , Animais , Bioensaio/métodos , Solventes/química
8.
Chem Pharm Bull (Tokyo) ; 69(4): 303-313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790076

RESUMO

Non-canonical amino acid derivatives are an attractive scaffold for novel drug candidates. Among the methods used to prepare this motif, the asymmetric Mannich-type reaction of α-imino carboxylic acid derivatives is a preeminent strategy because a wide variety of non-canonical amino acids can be accessed by changing only the nucleophile. Preparing the common substrate is difficult, however, which makes this method problematic. We developed a convenient method for synthesizing common substrates using MnO2-mediated oxidation of stable precursors. Peptides bearing non-canonical amino acids are another attractive synthetic target. We propose a new approach for synthesizing non-canonical amino acid-containing peptides by directly applying various organic reactions to peptidic substrates. Using hydrophobic anchor-supported peptides, we directly applied ring-closing metathesis and asymmetric Friedel-Crafts reactions to peptidic substrates. We also developed a novel recyclable organocatalyst according to the nature of the hydrophobic anchor tagged compound.


Assuntos
Aminoácidos/síntese química , Técnicas de Química Sintética/métodos , Peptídeos/síntese química , Preparações Farmacêuticas/síntese química , Aminoácidos/química , Catálise , Descoberta de Drogas/métodos , Compostos de Manganês/química , Oxirredução , Óxidos/química , Peptídeos/química , Preparações Farmacêuticas/química
9.
Appl Microbiol Biotechnol ; 104(2): 603-613, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31637495

RESUMO

Azaphilones are a class of fungal pigments, reported mostly in association with Monascus species. In Asian countries, they are used as food colourants under the name of "red yeast rice" and their production process is well described. One major limitation of current production techniques of azaphilones is that they always occur in a mixture of yellow, orange and red pigments. These mixtures are difficult to control and to quantify. This study has established a controlled and reproducible cultivation protocol to selectively tailor production of individual pigments during a submerged fermentation using another fungal species capable of producing azaphilone pigments, Talaromyces atroroseus, using single amino acids as the sole nitrogen source. The produced azaphilone pigments are called atrorosins and are amino acid derivatives of the known azaphilone pigment Penicillium purpurogenum-orange (PP-O), with the amino acid used as nitrogen source incorporated into the core skeleton of the azaphilone. This strategy was successfully demonstrated using 18 proteinogenic amino acids and the non-proteinogenic amino acid ornithine. Two cultivation methods for production of the pure serine derivative (atrorosin S) have been further developed, with yields of 0.9 g/L being obtained. Yielding pure atrorosins through switching from KNO3 to single amino acids as nitrogen source allows for considerably easier downstream processing and thus further enhances the commercial relevance of azaphilone producing fungal cell factories.


Assuntos
Aminoácidos/metabolismo , Meios de Cultura/química , Pigmentos Biológicos/biossíntese , Talaromyces/crescimento & desenvolvimento , Talaromyces/metabolismo , Benzopiranos , Fermentação , Nitrogênio/metabolismo
10.
J Appl Toxicol ; 40(6): 843-854, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32052484

RESUMO

The amino acid derivative reactivity assay (ADRA), which is an in chemico alternative to the use of animals in testing for skin sensitization potential, offers significant advantages over the direct peptide reactivity assay (DPRA) in that it utilizes nucleophilic reagents that are sensitive enough to be used with test chemical solutions prepared to concentrations of 1 mm, which is one-hundredth that of DPRA. ADRA testing of hydrophobic or other poorly soluble compounds requires that they be dissolved in a solvent consisting of dimethyl sulfoxide (DMSO) and acetonitrile. DMSO is known to promote dimerization by oxidizing thiols, which then form disulfide bonds. We investigated the extent to which DMSO oxidizes the cysteine-derived nucleophilic reagents used in both DPRA and ADRA and found that oxidation of both N-(2-(1-naphthyl)acetyl)-l-cysteine (NAC) and cysteine peptide increases as the concentration of DMSO increases, thereby lowering the concentration of the nucleophilic reagent. We also found that use of a solvent consisting of 5% DMSO in acetonitrile consistently lowered NAC concentrations by about 0.4 µm relative to the use of solvents containing no DMSO. We also tested nine sensitizers and four nonsensitizers having different sensitization potencies to compare NAC depletion with and without 5% DMSO and found that reactivity was about the same with either solvent. Based on the above, we conclude that the use of a solvent containing 5% DMSO has no effect on the accuracy of ADRA test results. We plan to review and propose revisions to OECD Test Guideline 442C based on the above investigation.


Assuntos
Alternativas aos Testes com Animais , Cisteína/química , Dimetil Sulfóxido/química , Irritantes/toxicidade , Testes de Irritação da Pele , Solventes/química , Acetonitrilas/química , Cisteína/análogos & derivados , Irritantes/química , Oxirredução , Medição de Risco
11.
J Appl Toxicol ; 39(11): 1492-1505, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31313332

RESUMO

The amino acid derivative reactivity assay (ADRA) is an in chemico alternative method that focuses on protein binding as the molecular initiating event for skin sensitization. It is a simple and versatile method that has successfully solved some of the problems of the direct peptide reactivity assay (DPRA). The transferability and within- and between-laboratory reproducibility of ADRA were evaluated and confirmed as part of a validation study conducted at four participating laboratories. The transfer of ADRA technology from the lead laboratory to the four participating laboratories was completed successfully during a two-step training program, after which the skin sensitization potentials of 40 coded chemicals were predicted based on the results of ADRA testing. Within-laboratories reproducibility was 100% (10 of 10), 100% (10 of 10), 100% (7 of 7) and 90% (9 of 10), or an average of 97.3% (36 of 37); between-laboratory reproducibility as calculated on the results of three laboratories at the time was 91.9%. The overall predictive capacity comprised an accuracy of 86.9%, sensitivity of 81.5% and specificity of 98.1%. These results satisfied the targets set by the validation management team for demonstrating transferability, within- and between-laboratory reproducibility, and predictive capacity as well as gave a clear indication that ADRA is easily transferable and sufficiently robust to be used in place of DPRA.


Assuntos
Alérgenos/toxicidade , Aminoácidos/química , Alternativas aos Testes com Animais/métodos , Laboratórios/normas , Pele/efeitos dos fármacos , Alérgenos/química , Bioensaio , Humanos , Técnicas In Vitro , Indicadores e Reagentes , Ensaio de Proficiência Laboratorial , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Pele/imunologia , Solventes/química
12.
J Appl Toxicol ; 39(2): 191-208, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30221369

RESUMO

The amino acid derivative reactivity assay (ADRA) is an in chemico alternative to animal testing for skin sensitization that solves certain problems found in the use of the direct peptide reactivity assay (DPRA). During a recent validation study conducted at multiple laboratories as part of the process to include ADRA in an existing OECD test guideline, one of the nucleophilic reagents used in ADRA-N-(2-(1-naphthyl)acetyl)-l-cysteine (NAC)-was found to be susceptible to oxidation in much the same manner that the cysteine peptide used in DPRA was. Owing to this, we undertook a study to clarify the cause of the promotion of NAC oxidation. In general, cysteine and other chemicals that have thiol groups are known to oxidize in the presence of even minute quantities of metal ions. When metal ions were added to the ADRA reaction solution, Cu2+ promoted NAC oxidation significantly. When 0.25 µm of EDTA was added in the presence of Cu2+ , NAC oxidation was suppressed. Based on this, we predicted that the addition of EDTA to the NAC stock solution would suppress NAC oxidation. Next, we tested 82 chemicals used in developing ADRA to determine whether EDTA affects ADRA's ability to predict sensitization. The results showed that the addition of EDTA has virtually no effect on the reactivity of NAC with a test chemical, yielding an accuracy of 87% for predictions of skin sensitization, which was roughly the same as ADRA.


Assuntos
Acetilcisteína/química , Alternativas aos Testes com Animais/métodos , Bioensaio/métodos , Ácido Edético/química , Alérgenos/administração & dosagem , Alérgenos/química , Alérgenos/toxicidade , Animais , Cobre/química , Compostos Férricos/química , Modelos Químicos , Oxirredução , Pele/efeitos dos fármacos , Pele/metabolismo
13.
Int J Mol Sci ; 20(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212677

RESUMO

An infrared free electron laser (IR-FEL) can decompose aggregated proteins by excitation of vibrational bands. In this study, we prepared hybrid materials of protein (human serum albumin; HSA) including several new Schiff base Zn(II) complexes incorporating amino acid (alanine and valine) or dipeptide (gly-gly) derivative moieties, which were synthesized and characterized with UV-vis, circular dichroism (CD), and IR spectra. Density functional theory (DFT) and time dependent DFT (TD-DFT) calculations were also performed to investigate vibrational modes of the Zn(II) complexes. An IR-FEL was used to irradiate HSA as well as hybrid materials of HSA-Zn(II) complexes at wavelengths corresponding to imine C=N, amide I, and amide II bands. Analysis of secondary structures suggested that including a Zn(II) complex into HSA led to the structural change of HSA, resulting in a more fragile structure than the original HSA. The result was one of the characteristic features of vibrational excitation of IR-FEL in contrast to electronic excitation by UV or visible light.


Assuntos
Raios Infravermelhos , Lasers , Bases de Schiff/química , Albumina Sérica Humana/química , Zinco/química , Humanos
14.
Bioorg Med Chem Lett ; 28(1): 49-52, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29162455

RESUMO

A series of novel or known water-soluble derivatives of chiral gossypol were synthesized and screened in vitro for their anti-HIV-1 activity. (-)-gossypol derivative was more active against HIV-1 than the corresponding (+)-gossypol derivative, respectively. Among these derivatives, d-glucosamine derivative of (-)-gossypol, oligopeptide derivative of (-)-gossypol and taurine derivative of (-)-gossypol, such as compounds 1a, 3a and 14a, showed significant inhibitory activities against HIV-1 replication, HIV-1 mediated cell-cell fusion and HIV gp41 6-helix bundle formation as some amino acid derivatives of (-)-gossypol.


Assuntos
Gossipol/química , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/síntese química , HIV-1/fisiologia , Sítios de Ligação , Desenho de Fármacos , Gossipol/metabolismo , Gossipol/farmacologia , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/metabolismo , Inibidores da Fusão de HIV/farmacologia , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Solubilidade , Estereoisomerismo , Replicação Viral/efeitos dos fármacos , Água/química
15.
Saudi Pharm J ; 26(5): 709-718, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29991915

RESUMO

The aim of this study was to characterize the stability of new vehicles for the undecylenoyl phenylalanine that is used as skin-lightening agent in the melasma treatment. The purpose of this research was also to analyse the release kinetics of phenylalanine derivative from topical preparations through different synthetic membranes. Topical formulations such as two different macroemulsions, hydrogels (based on carbomer and hydroxyethylcellulose) and microemulsions were characterized in terms of stability by laser diffraction method. Additionally, multiple light scattering assessed the stability of macroemulsions. The release rates of active substance through different membranes (such as Cuprophan, nitrocellulose, cellulose acetate and Strat-M) were determined using enhancer cell. In order to explain the mechanism of release process the results were fitted with different kinetic models. New stable vehicles for Ude-Phe were successfully obtained. The results proved that the membrane structure had the influence on the release rate of undecylenoyl phenylalanine. The slowest release rate of Ude-Phe was observed when Strat-M membrane was applied. The highest amount of active substance was released from the hydrogel based on carbomer. The release of undecylenoyl phenylalanine from both macroemulsions and hydrogel based on hydroxyethylcellulose followed the Higuchi model. Whereas the release results of Ude-Phe from both microemulsion-based hydrogels and carbomer hydrogel can be described by using Korsmeyer-Peppas model. Hydrogels and microemulsion-based hydrogels could be recommended as proper vehicles for the derivative of phenylalanine.

16.
J Biol Inorg Chem ; 22(7): 1055-1064, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28779308

RESUMO

The aim of this work is the identification of the structural effect of amino acid-Pd complex on DNA as an intracellular target which was studied using various spectroscopic techniques such as fluorescence, UV-visible and circular dichroism in combination with a molecular docking study. Hence, a novel water-soluble palladium complex, [Pd(phendione)(isopentylglycine)]NO3, has been synthesized and characterized by spectroscopic method. The anticancer activity of complex was investigated against human colon cancer cell line of HCT116 after 24 h of incubation using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. In addition, this complex was interacted with calf thymus DNA (ct-DNA) via positive cooperative interaction. The fluorescence data indicate that Pd complex is intercalated in DNA. These results were confirmed by circular dichroism spectra. The molecular docking results indicate that docking may be an appropriate method for the prediction and confirmation of experimental results. Complementary molecular docking results may be useful for the determination of the binding mechanism of DNA in pharmaceutical and biophysical studies providing new insight into the novel pharmacology and new solutions in the formulation of advanced oral drug delivery systems. Docking and spectroscopic studies show that new water-soluble Pd complex has anticancer activity and it can bind to DNA via intercalation and groove binding.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/farmacologia , Glicina/farmacologia , Substâncias Intercalantes/farmacologia , Paládio/farmacologia , Animais , Antineoplásicos/química , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Complexos de Coordenação/química , DNA/metabolismo , Glicina/análogos & derivados , Humanos , Substâncias Intercalantes/química , Simulação de Acoplamento Molecular , Paládio/química
17.
Bioorg Med Chem ; 25(1): 132-137, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793449

RESUMO

Abietic and dehydroabietic acid are interesting diterpenes with a highly diverse repertoire of associated bioactivities. They have, among others, shown antibacterial and antifungal activity, potentially valuable in the struggle against the increasing antimicrobial resistance and imminent antibiotic shortage. In this paper, we describe the synthesis of a set of 9 abietic and dehydroabietic acid derivatives containing amino acid side chains and their in vitro antimicrobial profiling against a panel of human pathogenic microbial strains. Furthermore, their in vitro cytotoxicity against mammalian cells was evaluated. The experimental results showed that the most promising compound was 10 [methyl N-(abiet-8,11,13-trien-18-yl)-d-serinate], with an MIC90 of 60µg/mL against Staphylococcus aureus ATCC 25923, and 8µg/mL against methicillin-resistant S. aureus, Staphylococcus epidermidis and Streptococcus mitis. The IC50 value for compound 10 against Balb/c 3T3 cells was 45µg/mL.


Assuntos
Abietanos/química , Abietanos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Células 3T3 BALB , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Fungos/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
18.
Amino Acids ; 47(12): 2495-503, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26162434

RESUMO

Disease caused by Tomato yellow leaf curl virus (TYLCV) brings serious production losses of cultivated tomato worldwide. In our previous study, two novel amino acid derivatives exerted satisfactory antiviral activities against TYLCV. In this study, the variation of TYLCV, the transcriptional expression level of Ty-1 and the enzyme activities of POD and PPO in tomato were monitored after treatment with two amino acid derivatives to illustrate the antiviral mechanism. The results showed the symptom severity caused by TYLCV was reduced significantly by two compounds and was associated with the inhibition of viral DNA level at the early stage. Among three levels of concentration, the highest inhibition rate of CNBF-His was 40.66% at 1000 mg/L, for CNBF-Asn, the highest inhibition rate was 36.26% at 2000 mg/L 30 days post-inoculation. Two compounds could also enhance the activities of PPO and POD and the transcriptional expression level of Ty-1 which correlates with plant resistance in tomato. In the field test, two compounds increased the yields of tomato and the maximum increase of yield was 37.66%. This is the first report of novel amino acid derivatives inducing resistance in tomato plant against TYLCV. It is suggested that amino acid derivatives have the potential to be an effective approach against TYLCV in tomato plant.


Assuntos
Aminoácidos/química , Begomovirus/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/virologia , Aminoácidos/síntese química , Catecol Oxidase/metabolismo , DNA Viral/isolamento & purificação , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Peroxidase/metabolismo , Doenças das Plantas/virologia , Folhas de Planta/virologia , Temperatura , Transcrição Gênica
19.
J Appl Toxicol ; 35(11): 1348-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25809859

RESUMO

The direct peptide reactivity assay (DPRA) is a simple and versatile alternative method for the evaluation of skin sensitization that involves the reaction of test chemicals with two peptides. However, this method requires concentrated solutions of test chemicals, and hydrophobic substances may not dissolve at the concentrations required. Furthermore, hydrophobic test chemicals may precipitate when added to the reaction solution. We previously established a high-sensitivity method, the amino acid derivative reactivity assay (ADRA). This method uses novel cysteine (NAC) and novel lysine derivatives (NAL), which were synthesized by introducing a naphthalene ring to the amine group of cysteine and lysine residues. In this study, we modified the ADRA method by reducing the concentration of the test chemicals 100-fold. We investigated the accuracy of skin sensitization predictions made using the modified method, which was designated the ADRA-dilutional method (ADRA-DM). The predictive accuracy of the ADRA-DM for skin sensitization was 90% for 82 test chemicals which were also evaluated via the ADRA, and the predictive accuracy in the ADRA-DM was higher than that in the ADRA and DPRA. Furthermore, no precipitation of test compounds was observed at the initiation of the ADRA-DM reaction. These results show that the ADRA-DM allowed the use of test chemicals at concentrations two orders of magnitude lower than that possible with the ADRA. In addition, ADRA-DM does not have the restrictions on test compound solubility that were a major problem with the DPRA. Therefore, the ADRA-DM is a versatile and useful method.


Assuntos
Alternativas aos Testes com Animais/métodos , Naftalenos/toxicidade , Peptídeos/química , Pele/efeitos dos fármacos , Bioensaio , Cromatografia Líquida de Alta Pressão , Cisteína/química , Bases de Dados Factuais , Humanos , Concentração de Íons de Hidrogênio , Lisina/química , Reprodutibilidade dos Testes , Pele/metabolismo
20.
Metabolites ; 12(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36355166

RESUMO

Deguelia nitidula (Benth.) A.M.G.Azevedo & R.A.Camargo (Fabaceae) is an herbaceous plant distributed in the Brazilian Amazon, and it is called "raiz do sol" (sun roots). On Marajó Island, quilombola communities use its prepared roots to treat skin diseases commonly caused by fungi, viruses, and bacteria. Thus, in this study, the extract, and its fractions from D. nitidula roots were used to perform in vitro cytotoxic and antibacterial assays against Staphylococcus aureus strains. Thereafter, liquid chromatography-mass spectrometry (LC-MS) was used for the metabolite annotation process. The ethanolic extract of D. nitidula roots show significant bactericidal activity against S. aureus with IC50 82 µg.mL-1 and a selectivity index (SI) of 21.35. Furthermore, the SREFr2 and SREFr3 fractions show a potent bactericidal activity, i.e., MIC of 46.8 µg.mL-1 for both, and MBC of 375 and 93.7 µg.mL-1, respectively. As showcased, SREFr3 shows safe and effective antibacterial activity mainly in respect to the excellent selectivity index (SI = 82.06). On the other hand, SREFr2 shows low selectivity (SI = 6.8), which characterizes it as not safe for therapeutic use. Otherwise, due to a limited amount of reference MS2 spectra in public libraries, up to now, it was not possible to perform a complete metabolite annotation. Despite that, our antibacterial results for SREFr3 and correlated substructures of amino acid derivatives show that the roots of D. nitidula are a natural source of specialized metabolites, which can be isolated in the future, and then used as a support for further bio-guided research, as well as natural drug development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa