Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 23(11): e202100666, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35040514

RESUMO

Specific flavoenzyme oxidases catalyze oxidative decarboxylation in addition to their classical oxidation reactions in the same active sites. The mechanisms underlying oxidative decarboxylation by these enzymes and how they control their two activities are not clearly known. This article reviews the current state of knowledge of four enzymes from the l-amino acid oxidase and l-hydroxy acid oxidase families, including l-tryptophan 2-monooxygenase, l-phenylalanine 2-oxidase and l-lysine oxidase/monooxygenase and lactate monooxygenase which catalyze substrate oxidation and oxidative decarboxylation. Apart from specific interactions to allow substrate oxidation by the flavin cofactor, specific binding of oxidized product in the active sites appears to be important for enabling subsequent decarboxylation by these enzymes. Based on recent findings of l-lysine oxidase/monooxygenase, we propose that nucleophilic attack of H2 O2 on the imino acid product is the mechanism enabling oxidative decarboxylation.


Assuntos
Oxigenases de Função Mista , Estresse Oxidativo , Catálise , Descarboxilação , Oxigenases de Função Mista/metabolismo , Oxirredução
2.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652889

RESUMO

Genetic code expansion (GCE) technology is a useful tool for the site-specific modification of proteins. An unnatural amino acid (UAA) is one of the essential components of this technique, typically required at high concentration (1 mM or higher) in growth medium. The supply of UAAs is an important limitation to the application of GCE technology, as many UAAs are either expansive or commercially unavailable. In this study, two UAAs in a racemic mixture were converted into optically pure forms using two enzymes, the d-amino acid oxidase (RgDAAO) from Rhodotorula gracilis and the aminotransferase (TtAT) from Thermus thermophilus. In the coupled enzyme system, RgDAAO oxidizes the d-form of UAAs in a stereospecific manner and produces the corresponding α-keto acids, which are then converted into the l-form of UAAs by TtAT, resulting in the quantitative and stereospecific conversion of racemic UAAs to optically pure forms. The genetic incorporation of the optically pure UAAs into a target protein produced a better protein yield than the same experiments using the racemic mixtures of the UAAs. This method could not only be used for the preparation of optically pure UAAs from racemic mixtures, but also the broad substrate specificity of both enzymes would allow for its expansion to structurally diverse UAAs.


Assuntos
Aminoácidos/genética , Engenharia de Proteínas , Proteínas/genética , Rhodotorula/genética , Aminoácidos/química , Clonagem Molecular , Meios de Cultura/química , Escherichia coli/genética , Código Genético , Proteínas/química , Rhodotorula/química , Especificidade por Substrato
3.
Chembiochem ; 20(5): 701-709, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447031

RESUMO

R-ω-Transaminases (RTAs) catalyse the conversion of R-configured amines [e.g., (R)-1-phenylethylamine] into the corresponding ketones (e.g., acetophenone), by transferring an amino group from an amino donor [e.g., (R)-1-phenylethylamine] onto an amino acceptor (e.g., pyruvate), resulting in a co-product (e.g., d-alanine). d-Alanine can be deaminated back to pyruvate by d-amino acid oxidase (DAAOs). Here, through in vivo subunit splicing, the N terminus of an RTA subunit (RTAS ) was specifically ligated to the C terminus of a DAAO subunit (DAAOS ) through native peptide bonds (RTA&DAAO). RTAS is in close proximity to DAAOS , at a molecular-scale distance. Thus the transfer of pyruvate and d-alanine between RTA and DAAO can be directional and efficient. Pyruvate→d-alanine→pyruvate cycles are efficiently formed, thus promoting the forward transamination reaction. In a different, in vitro noncovalent approach, based on coiled-coil association, the RTAS N terminus was specifically associated with the DAAOS C terminus (RTA#DAAO). In addition, the two mixed individual enzymes (RTA+DAAO) were also studied. RTA&DAAO has a shorter distance between the paired subunits (RTAS -DAAOS ) than RTA#DAAO, and the number of the paired subunits is higher than in the case of RTA#DAAO, whereas RTA+DAAO cannot form the paired subunits. RTA&DAAO exhibited a transamination catalysis efficiency higher than that of RTA#DAAO and much higher than that of RTA+DAAO.


Assuntos
D-Aminoácido Oxidase/metabolismo , Processamento de Proteína/genética , Transaminases/metabolismo , Alanina/metabolismo , Aminação , Catálise , Clonagem Molecular , Escherichia coli/genética , Cinética , Fenetilaminas/metabolismo
4.
Mar Drugs ; 13(12): 7403-18, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26694422

RESUMO

Amino acid oxidases (AAOs) catalyze the oxidative deamination of amino acids releasing ammonium and hydrogen peroxide. Several kinds of these enzymes have been reported. Depending on the amino acid isomer used as a substrate, it is possible to differentiate between l-amino acid oxidases and d-amino acid oxidases. Both use FAD as cofactor and oxidize the amino acid in the alpha position releasing the corresponding keto acid. Recently, a novel class of AAOs has been described that does not contain FAD as cofactor, but a quinone generated by post-translational modification of residues in the same protein. These proteins are named as LodA-like proteins, after the first member of this group described, LodA, a lysine epsilon oxidase synthesized by the marine bacterium Marinomonas mediterranea. In this review, a phylogenetic analysis of all the enzymes described with AAO activity has been performed. It is shown that it is possible to recognize different groups of these enzymes and those containing the quinone cofactor are clearly differentiated. In marine bacteria, particularly in the genus Pseudoalteromonas, most of the proteins described as antimicrobial because of their capacity to generate hydrogen peroxide belong to the group of LodA-like proteins.


Assuntos
Aminoácidos/metabolismo , Anti-Infecciosos/farmacologia , Bactérias/isolamento & purificação , Aminoácido Oxirredutases/metabolismo , Animais , Anti-Infecciosos/isolamento & purificação , Organismos Aquáticos/microbiologia , Proteínas de Bactérias/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Quinonas/metabolismo
5.
Toxicon ; 238: 107569, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38122835

RESUMO

The present work addressed the abilities of two L-amino acid oxidases isolated from Bothrops moojeni (BmooLAAO-I) and Bothrops jararacussu (BjussuLAAO-II) snake venoms to control the growth and prevent the biofilm formation of clinically relevant bacterial pathogens. Upon S. aureus (ATCC BAA44) and S. aureus (clinical isolates), BmooLAAO-I (MIC = 0.12 and 0.24 µg/mL, respectively) and BjussuLAAO-II (MIC = 0.15 µg/mL) showed a potent bacteriostatic effect. Against E. coli (ATCC BAA198) and E. coli (clinical isolates), BmooLAAO-I (MIC = 15.6 and 62.5 µg/mL, respectively) and BjussuLAAO-II (MIC = 4.88 and 9.76 µg/mL, respectively) presented a lower extent effect. Also, BmooLAAO-I (MICB50 = 0.195 µg/mL) and BjussuLAAO-II (MICB50 = 0.39 µg/mL) inhibited the biofilm formation of S. aureus (clinical isolates) in 88% and 89%, respectively, and in 89% and 53% of E. coli (clinical isolates). Moreover, scanning electron microscopy confirmed that the toxins affected bacterial morphology by increasing the roughness of the cell surface and inhibited the biofilm formation. Furthermore, analysis of the tridimensional structures of the toxins showed that the surface-charge distribution presents a remarkable positive region close to the glycosylation motif, which is more pronounced in BmooLAAO-I than BjussuLAAO-II. This region may assist the interaction with bacterial and biofilm surfaces. Collectively, our findings propose that venom-derived antibiofilm agents are promising biotechnological tools which could provide novel strategies for biofilm-associated infections.


Assuntos
Bothrops , Venenos de Crotalídeos , Serpentes Peçonhentas , Animais , Venenos de Crotalídeos/toxicidade , L-Aminoácido Oxidase/farmacologia , L-Aminoácido Oxidase/química , Staphylococcus aureus , Escherichia coli , Venenos de Serpentes/química , Bactérias , Biofilmes
6.
Life Sci ; 308: 120962, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113732

RESUMO

l-Amino acid oxidase isolated from Calloselasma rhodostoma (Cr-LAAO) snake venom is a potent stimulus for neutrophil activation and production of inflammatory mediators, contributing to local inflammatory effects in victims of envenoming. Cr-LAAO triggered the activation of nicotinamide adenine dinucleotide phosphatase (NADPH) oxidase complex and protein kinase C (PKC)-α signaling protein for reactive oxygen species (ROS) production. This study aims to evaluate the ROS participation in the NLRP3 inflammasome complex activation in human neutrophil. Human neutrophils were isolated and stimulated for 1 or 2 h with RPMI (negative control), LPS (1 µg/mL, positive control) or Cr-LAAO (50 µg/mL). The neutrophil transcriptome was examined using the microarray technique, and RT-qPCR for confirmation of gene expression. Immunofluorescence assays for NLRP3, caspase-1, IL-1ß and GSDMD proteins was performed by Western blot in the presence and/or absence of Apocynin, an inhibitor of NADPH oxidase. IL-1ß release was also detected in the presence and/or absence of NLRP3, caspase-1 and NADPH oxidase inhibitors. Results showed that Cr-LAAO upregulated the expression of genes that participate in the NADPH oxidase complex formation and inflammasome assembly. NLRP3 was activated and accumulated in the cytosol forming punctas, indicating its activation. Gasdermin D was not cleaved but lactate dehydrogenase was released. Furthermore, ROS inhibition decreased the expression of NLRP3 inflammasome complex proteins, as observed by protein expression in the presence and/or absence of apocynin, an NADPH oxidase inhibitor. IL-1ß was also released, and pharmacological inhibition of NLRP3, caspase-1, and ROS reduced the amount of released cytokine. This is the first report demonstrating the activation of the NLRP3 inflammasome complex via ROS generation by Cr-LAAO, which may lead to the development of local inflammatory effects observed in snakebite victims.


Assuntos
Inflamassomos , L-Aminoácido Oxidase , Acetofenonas , Caspase 1/metabolismo , Citocinas/metabolismo , Humanos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , L-Aminoácido Oxidase/metabolismo , L-Aminoácido Oxidase/farmacologia , Lactato Desidrogenases/metabolismo , Lipopolissacarídeos/farmacologia , NAD/metabolismo , NADP/metabolismo , NADPH Oxidases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Venenos de Serpentes/metabolismo , Venenos de Serpentes/farmacologia
7.
Microbiologyopen ; 10(4): e1224, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459552

RESUMO

l-amino acid oxidases (LAAOs) catalyze the oxidative deamination of l-amino acids to corresponding α-keto acids. Here, we describe the heterologous expression of four fungal LAAOs in Pichia pastoris. cgLAAO1 from Colletotrichum gloeosporioides and ncLAAO1 from Neurospora crassa were able to convert substrates not recognized by recombinant 9His-hcLAAO4 from the fungus Hebeloma cylindrosporum described earlier thereby broadening the substrate spectrum for potential applications. 9His-frLAAO1 from Fibroporia radiculosa and 9His-laLAAO2 from Laccaria amethystine were obtained only in low amounts. All four enzymes were N-glycosylated. We generated mutants of 9His-hcLAAO4 lacking N-glycosylation sites to further understand the effects of N-glycosylation. All four predicted N-glycosylation sites were glycosylated in 9His-hcLAAO4 expressed in P. pastoris. Enzymatic activity was similar for fully glycosylated 9His-hcLAAO4 and variants without one or all N-glycosylation sites after acid activation of all samples. However, activity without acid treatment was low in a variant without N-glycans. This was caused by the absence of a hypermannosylated N-glycan on asparagine residue N54. The lack of one or all of the other N-glycans was without effect. Our results demonstrate that adoption of a more active conformation requires a specific N-glycosylation during biosynthesis.


Assuntos
L-Aminoácido Oxidase/química , L-Aminoácido Oxidase/metabolismo , Saccharomycetales/metabolismo , Colletotrichum/enzimologia , Desaminação/fisiologia , Expressão Gênica/genética , Glicosilação , Hebeloma/enzimologia , L-Aminoácido Oxidase/genética , Laccaria/enzimologia , Neurospora crassa/enzimologia , Polyporales/enzimologia , Conformação Proteica , Saccharomycetales/genética
8.
Front Pharmacol ; 11: 110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158389

RESUMO

Snake venom L-amino acid oxidases (SV-LAAOs) are the least studied venom enzymes. These enzymes catalyze the stereospecific oxidation of an L-amino acid to their corresponding α-keto acid with the liberation of hydrogen peroxide (H2O2) and ammonia (NH3). They display various pathological and physiological activities including induction of apoptosis, edema, platelet aggregation/inhibition, hemorrhagic, and anticoagulant activities. They also show antibacterial, antiviral and leishmanicidal activity and have been used as therapeutic agents in some disease conditions like cancer and anti-HIV drugs. Although the crystal structures of six SV-LAAOs are present in the Protein Data Bank (PDB), there is no single article that describes all of them in particular. To better understand their structural properties and correlate it with their function, the current work describes structure characterization, structure-based mechanism of catalysis, inhibition and substrate specificity of SV-LAAOs. Sequence analysis indicates a high sequence identity (>84%) among SV-LAAOs, comparatively lower sequence identity with Pig kidney D-amino acid oxidase (<50%) and very low sequence identity (<24%) with bacterial LAAOs, Fugal (L-lysine oxidase), and Zea mays Polyamine oxidase (PAAO). The three-dimensional structure of these enzymes are composed of three-domains, a FAD-binding domain, a substrate-binding domain and a helical domain. The sequence and structural analysis indicate that the amino acid residues in the loops vary in length and composition due to which the surface charge distribution also varies that may impart variable substrate specificity to these enzymes. The active site cavity volume and its average depth also vary in these enzymes. The inhibition of these enzymes by synthetic inhibitors will lead to the production of more potent antivenoms against snakebite envenomation.

9.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 11): 517-523, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135670

RESUMO

D-Amino-acid oxidases (DAAOs) catalyze the oxidative deamination of neutral and basic D-amino acids. The DAAO from the thermophilic fungus Rasamsonia emersonii strain YA (ReDAAO) has a high thermal stability and a unique broad substrate specificity that includes the acidic D-amino acid D-Glu as well as various neutral and basic D-amino acids. In this study, ReDAAO was crystallized by the hanging-drop vapor-diffusion method and its crystal structure was determined at a resolution of 2.00 Å. The crystal structure of the enzyme revealed that unlike other DAAOs, ReDAAO forms a homotetramer and contains an intramolecular disulfide bond (Cys230-Cys285), suggesting that this disulfide bond is involved in the higher thermal stability of ReDAAO. Moreover, the structure of the active site and its vicinity in ReDAAO indicates that Arg97, Lys99, Lys114 and Ser231 are candidates for recognizing the side chain of D-Glu.


Assuntos
D-Aminoácido Oxidase/química , Eurotiales/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Dissulfetos/química , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ácido Glutâmico/metabolismo , Modelos Moleculares , Conformação Proteica
10.
R Soc Open Sci ; 6(4): 182035, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31183133

RESUMO

α-keto acids are compounds of primary interest for the fine chemical, pharmaceutical and agrochemical sectors. l-amino acid oxidases as an efficient tool are used for α-keto acids preparation in this study. Firstly, an l-amino acid oxidase (PmiLAAO) from Proteus mirabilis was discovered by data mining. Secondly, by gene expression vector screening, pETDuet-1-PmiLAAO activity improved by 130%, as compared to the pET20b-PmiLAAO. PmiLAAO production was increased to 9.8 U ml-1 by optimized expression condition (OD600 = 0.65, 0.45 mmol l-1 IPTG, 20 h of induction). Furthermore, The PmiLAAO was stabile in the pH range of 4.0-9.0 and in the temperature range of 10-40°C; the optimal pH and temperature of recombinant PmiLAAO were 6.5 and 37°C, respectively. Afterwards, in order to simplify product separation process, E. coli-pETduet-1-PmiLAAO was immobilized in Ca-alginate beads. Continuous production of 2-oxo-3-phenylpropanoic acid was conducted in a packed-bed reactor via immobilized E. coli-pETduet-1-PmiLAAO. Significantly, 29.66 g l-1 2-oxo-3-phenylpropanoic acid with a substrate conversion rate of 99.5% was achieved by correspondingly increasing the residence time (25 h). This method holds the potential to be used for efficiently producing pure α-keto acids.

11.
Artigo em Inglês | MEDLINE | ID: mdl-24940304

RESUMO

The L-amino acid oxidases (LAAOs) constitute a major component of snake venoms and have been widely studied due to their widespread presence and various effects, such as apoptosis induction, cytotoxicity, induction and/or inhibition of platelet aggregation, hemorrhage, hemolysis, edema, as well as antimicrobial, antiparasitic and anti-HIV activities. The isolated and characterized snake venom LAAOs have become important research targets due to their potential biotechnological applications in pursuit for new drugs of interest in the scientific and medical fields. The current study discusses the antitumor effects of snake venom LAAOs described in the literature to date, highlighting the mechanisms of apoptosis induction proposed for this class of proteins.

12.
Enzyme Microb Technol ; 67: 27-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25442945

RESUMO

Acoustic wave resonance oscillation has been used successfully in the development of methods to activate immobilized enzyme catalysts. In this study, resonance oscillation effects were demonstrated for enzyme reactions on galactose oxidase (GAD), D-amino acid oxidase (DAAO), and L-amino acid oxidase (LAAO), all of which were immobilized covalently on a ferroelectric lead zirconate titanate (PZT) device that could generate thickness-extensional resonance oscillations (TERO) of acoustic waves. For galactose oxidation on immobilized GAD in a microreactor, TERO generation immediately increased enzyme activity 2- to 3-fold. Eliminating TERO caused a slight decrease in the activity, with ∼90% of the enhanced activity retained while the reaction proceeded. Contact of the enhanced enzyme with a galactose-free solution caused almost complete reversion of the activity to the original low level before TERO generation, indicating that, not only TERO-induced GAD activation, but also preservation of the increased activity, required a galactose substrate. Similar activity changes with TERO were observed for enzyme reactions on DAAO and LAAO. Kinetic analysis demonstrated that TERO helped strengthen the interactions of the immobilized enzyme with the reactant substrate and promoted formation of an activation complex.


Assuntos
Enzimas Imobilizadas/metabolismo , Animais , Reatores Biológicos , Catálise , D-Aminoácido Oxidase/metabolismo , Ativação Enzimática , Galactose/metabolismo , Galactose Oxidase/metabolismo , Cinética , L-Aminoácido Oxidase/metabolismo , Chumbo , Oxirredução , Som , Titânio , Zircônio
13.
Artigo em Inglês | LILACS | ID: lil-724668

RESUMO

The L-amino acid oxidases (LAAOs) constitute a major component of snake venoms and have been widely studied due to their widespread presence and various effects, such as apoptosis induction, cytotoxicity, induction and/or inhibition of platelet aggregation, hemorrhage, hemolysis, edema, as well as antimicrobial, antiparasitic and anti-HIV activities. The isolated and characterized snake venom LAAOs have become important research targets due to their potential biotechnological applications in pursuit for new drugs of interest in the scientific and medical fields. The current study discusses the antitumor effects of snake venom LAAOs described in the literature to date, highlighting the mechanisms of apoptosis induction proposed for this class of proteins.


Assuntos
Animais , L-Aminoácido Oxidase/análise , Oxirredutases/análise , Venenos/administração & dosagem , Serpentes/classificação
14.
J. venom. anim. toxins incl. trop. dis ; 20: 1-7, 04/02/2014. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484558

RESUMO

The L-amino acid oxidases (LAAOs) constitute a major component of snake venoms and have been widely studied due to their widespread presence and various effects, such as apoptosis induction, cytotoxicity, induction and/or inhibition of platelet aggregation, hemorrhage, hemolysis, edema, as well as antimicrobial, antiparasitic and anti-HIV activities. The isolated and characterized snake venom LAAOs have become important research targets due to their potential biotechnological applications in pursuit for new drugs of interest in the scientific and medical fields. The current study discusses the antitumor effects of snake venom LAAOs described in the literature to date, highlighting the mechanisms of apoptosis induction proposed for this class of proteins.


Assuntos
Animais , L-Aminoácido Oxidase/análise , Oxirredutases/análise , Venenos/administração & dosagem , Serpentes/classificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa