Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Nano Lett ; 23(6): 2233-2238, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36856602

RESUMO

We investigate electrically driven plasmon (EDP) emission in metal-insulator-semiconductor tunnel junctions. We find that amorphization of the silicon crystal at a narrow region near the junction due to the applied voltage plays a critical role in determining the nature of the emission. Furthermore, we suggest that the change in the properties of the insulating layer above a threshold voltage determines the EDP spatial properties, from being spatially uniform when the device is subjected to low voltages, to a spotty pattern peaking at high voltages. We emphasize the role of the high-energy emission as an unambiguous tool for distinguishing between EDP and radiative recombination of electrons and holes in the semiconductor.

2.
Microsc Microanal ; 29(5): 1579-1594, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37632736

RESUMO

Electron correlation microscopy experiments were conducted on amorphous germanium (a-Ge) and amorphous silicon (a-Si) with the goal to study self-diffusion. For this purpose, a series of tilted dark-field images were acquired during in situ heating of the samples in a transmission electron microscope. These experiments show that the measurements are greatly affected by artefacts. Contamination, crystallization, electron beam-induced sputtering, and macroscopic bending of the samples pose major obstacles to the measurements. Other, more subtle experimental artefacts could occur in addition to these which makes interpretations regarding the structural dynamics nearly impossible. The data were nonetheless evaluated to see if some useful information could be extracted. One such result is that the distribution of the characteristic times τKWW, which were obtained from stretched exponential fits to the intensity autocorrelation data, is spatially heterogeneous. This spatial heterogeneity is assumed to be caused by a potential nonergodicity of the materials, the artefacts or an inhomogeneous amorphous structure. Further data processing shows that the characteristic times τKWW are moreover temperature independent, especially for the a-Ge data. It is concluded that the structural rearrangements over time are primarily electron beam-driven and that diffusive dynamics are too slow to be measured at the chosen, experimentally accessible annealing temperatures.

3.
Microsc Microanal ; 29(2): 477-489, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37749731

RESUMO

Variable resolution fluctuation electron microscopy experiments were performed on self-ion implanted amorphous silicon and amorphous germanium to analyze the medium-range order. The results highlight that the commonly used pair-persistence analysis is influenced by the experimental conditions. Precisely, the structural correlation length Λ, a metric for the medium-range order length scale in the material, obtained from this particular evaluation varies depending on whether energy filtering is used to acquire the data. In addition, Λ depends on the sample thickness. Both observations can be explained by the fact that the pair-persistence analysis utilizes the experimentally susceptible absolute value of the normalized variance obtained from fluctuation electron microscopy data. Instead, plotting the normalized variance peak magnitude over the electron beam size offers more robust results. This evaluation yields medium-range order with an extent of approximately (1.50 ± 0.50) nm for the analyzed amorphous germanium and around (1.10 ± 0.20) nm for amorphous silicon.

4.
Microsc Microanal ; : 1-11, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047128

RESUMO

This work investigates how knock-on displacements influence fluctuation electron microscopy (FEM) experiments. FEM experiments were conducted on amorphous silicon, formed by self-ion implantation, in a transmission electron microscope at 300 kV and 60 kV at various electron doses, two different binnings and with two different cameras, a CCD and a CMOS one. Furthermore, energy filtering has been utilized in one case. Energy filtering greatly enhances the FEM data by removing the inelastic background intensity, leading to an improved speckle contrast. The CMOS camera yields a slightly larger normalized variance than the CCD at an identical electron dose and appears more prone to noise at low electron counts. Beam-induced atomic displacements affect the 300 kV FEM data, leading to a continuous suppression of the normalized variance with increasing electron dose. Such displacements are considerably reduced for 60 kV experiments since the primary electron's maximum energy transfer to an atom is less than the displacement threshold energy of amorphous silicon. The results show that the variance suppression due to knock-on displacements can be controlled in two ways: Either by minimizing the electron dose to the sample or by conducting the experiment at a lower acceleration voltage.

5.
Toxicol Ind Health ; 37(5): 289-302, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34078188

RESUMO

The study on the health effects of combined exposure to various contaminants has been recommended by many authors. The objective of the present study was to examine the effects of the co-exposure to hematite and amorphous silicon dioxide (A-SiO2) nanoparticles on the human lung A549 cell line. The A549 cell line was exposed to 10, 50, 100, and 250 µg/ml concentrations of hematite and A-SiO2 nanoparticles both independently and in combination. Their toxicity in both circumstances was investigated by MTT, intracellular reactive oxygen species, cell glutathione content, and mitochondrial membrane potential tests, and the type of interaction was investigated by statistical analysis using Statistical Package for Social Sciences (SPSS, v. 21). Results showed that the independent exposure to either hematite or A-SiO2 compared with the control group produced more toxic effects on the A549 cell line. The toxicity of combined exposure of the nanoparticles was lower compared with independent exposure, and antagonistic interactive effects were detected. The findings of this study could be useful in clarifying the present debate on the health effects of combined exposure of hematite and A-SiO2 nanoparticles. Because of the complexities of combined exposures, further studies of this kind are recommended.


Assuntos
Linhagem Celular/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Compostos Férricos/toxicidade , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/fisiopatologia , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Relação Dose-Resposta a Droga , Humanos
6.
Sensors (Basel) ; 21(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430165

RESUMO

An optoelectronic, integrated system-on-glass for on-chip detection of biomolecules is here presented. The system's working principle is based on the interaction, detected by a hydrogenated amorphous silicon photosensor, between a monochromatic light travelling in a SU-8 polymer optical waveguide and the biological solution under analysis. Optical simulations of the waveguide coupling to the thin-film photodiode with a specific design were carried out. A prototype was fabricated and characterized showing waveguide optical losses of about 0.6 dB/cm, a photodiode shot noise current of about 2.5 fA/Hz and responsivity of 495 mA/W at 532 nm. An electro-optical coupling test was performed on the fabricated device to validate the system. As proof of concept, hemoglobin was studied as analyte for a demonstration scenario, involving optical simulations interpolated with experimental data. The calculated detection limit of the proposed system for hemoglobin concentration in aqueous solution is around 100 ppm, in line with colorimetric methods currently on the market. These results show the effectiveness of the proposed system in biological detection applications and encourage further developments in implementing these kinds of devices in the biomedical field.


Assuntos
Vidro , Silício , Colorimetria , Estudos de Viabilidade , Hemoglobinas
7.
Angew Chem Int Ed Engl ; 60(21): 11966-11972, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33590572

RESUMO

Ferrihydrite (Fh) has been demonstrated as an effective interfacial layer for photoanodes to achieve outstanding photoelectrochemical (PEC) performance for water oxidation reaction owing to its unique hole-storage function. However, it is unknown whether such a hole-storage layer can be used to construct highly efficient photocathodes for hydrogen evolution reaction (HER). In this work, we report Fh interfacial engineering of amorphous silicon photocathode (with nickel as HER cocatalyst) achieving a photocurrent density of 15.6 mA cm-2 at 0 V vs. the reversible hydrogen electrode and a half-cell energy conversion efficiency of 4.08 % in alkaline solution, outperforming most of reported a-Si based photocathodes including multi-junction configurations integrated with noble metal cocatalysts in acid solution. Besides, the photocurrent density is maintained above 14 mA cm-2 for 175 min with 100 % Faradaic efficiency for HER in alkaline solution. Our results demonstrate a feasible approach to construct efficient photocathodes via the application of a hole-storage layer.

8.
Exp Appl Acarol ; 82(2): 243-254, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32897464

RESUMO

Four silica-based acaricides were examined in laboratory tests for their effectiveness against poultry red mite, Dermanyssus gallinae. All acaricides resulted in 100% mite mortality. Two groups of active ingredients could be differentiated. The products Silicosec® and Ewazid®, based on naturally occurring diatomaceous earth (DE), killed 100% of adult D. gallinae within 48 h exposure time. The time to kill 50% of the mites (LT50) was calculated to be 31.7 and 34.9 h, respectively. The other two products, containing aggregates and agglomerates of pyrogenic synthetic amorphous silicon dioxide as active ingredients, killed the mites in a significantly shorter time: LT50 was 6.3 h for the liquid product Fossil Shield® Instant White and 11.8 h for the powdery product Fossil Shield 90.0 White. This is more remarkable as the quantities of active ingredients used for the DE treatments were several folds higher. The effectiveness of all tested products was also shown in practical tests. A professional company treated five chicken houses on one farm in the Berlin-Brandenburg region with the test products, three houses with Fossil Shield Instant White and one each with Ewazid and Silicosec. Over a period of 46 weeks after stocking, the mite development in the houses was assessed. Only in one of the houses, treated with Fossil Shield Instant White, the mite population remained permanently low. In two houses treated with Fossil Shield Instant White, small mite colonies appeared in week 36, which were controlled by a follow-up spot treatment in week 41. In the houses treated with DE, the first mite colonies appeared 12 weeks after stocking. The number increased continuously over the experimental period and in week 31 after stocking there were clearly visible colonies (2-3 cm diameter) and the first mites could also be detected on the chicken eggs. At this time both houses were treated again with a follow-up spot-treatment, which only led to a slight improvement in one house and to a stabilization of the infestation in the other house. In week 41, large mite colonies were detected in both houses. A spot treatment at this point was ineffective in reducing the infestation. The tests showed faster acaricidal action of the products with the synthetic active ingredients compared to the natural DE-based products. This matches the shorter killing times under laboratory conditions. The experiments in a commercial chicken farm showed that it is possible to control the mite population for a period of 46 weeks by using physically effective SiO2-based products. These products are therefore an effective alternative to the use of chemical acaricides.


Assuntos
Acaricidas , Infestações por Ácaros/veterinária , Ácaros , Doenças das Aves Domésticas/prevenção & controle , Dióxido de Silício , Animais , Galinhas/parasitologia , Infestações por Ácaros/prevenção & controle , Aves Domésticas/parasitologia , Doenças das Aves Domésticas/parasitologia
9.
Nano Lett ; 17(12): 7218-7225, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29087722

RESUMO

Thermal transport in amorphous silicon dioxide (a-SiO2) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO2. With solid experimental data demonstrating ballistic phonon transport through a-SiO2, this work should provide important insight into thermal management of electronic devices.

10.
Sensors (Basel) ; 16(2): 267, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26907292

RESUMO

This paper presents a thin film structure suitable for low-level radiation measurements in lab-on-chip systems that are subject to thermal treatments of the analyte and/or to large temperature variations. The device is the series connection of two amorphous silicon/amorphous silicon carbide heterojunctions designed to perform differential current measurements. The two diodes experience the same temperature, while only one is exposed to the incident radiation. Under these conditions, temperature and light are the common and differential mode signals, respectively. A proper electrical connection reads the differential current of the two diodes (ideally the photocurrent) as the output signal. The experimental characterization shows the benefits of the differential structure in minimizing the temperature effects with respect to a single diode operation. In particular, when the temperature varies from 23 to 50 °C, the proposed device shows a common mode rejection ratio up to 24 dB and reduces of a factor of three the error in detecting very low-intensity light signals.

11.
Sensors (Basel) ; 16(8)2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27472329

RESUMO

Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

12.
Sensors (Basel) ; 16(1)2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26751446

RESUMO

Hydrogenated amorphous silicon (a-Si:H) shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics applications is presented here. The linear dependence of the voltage drop across the forward-biased diode on temperature, in a range from 30 °C up to 170 °C, has been used for thermal sensing. A high sensitivity of 11.9 mV/°C in the bias current range of 34-40 nA has been measured. The proposed device is particularly suitable for the continuous temperature monitoring of CMOS-compatible photonic integrated circuits, where the behavior of the on-chip active and passive devices are strongly dependent on their operating temperature.

13.
Sensors (Basel) ; 15(6): 12260-72, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26016913

RESUMO

In this work, we propose a multi-parametric sensor able to measure both temperature and radiation intensity, suitable to increase the level of integration and miniaturization in Lab-on-Chip applications. The device is based on amorphous silicon p-doped/intrinsic/n-doped thin film junction. The device is first characterized as radiation and temperature sensor independently. We found a maximum value of responsivity equal to 350 mA/W at 510 nm and temperature sensitivity equal to 3.2 mV/K. We then investigated the effects of the temperature variation on light intensity measurement and of the light intensity variation on the accuracy of the temperature measurement. We found that the temperature variation induces an error lower than 0.55 pW/K in the light intensity measurement at 550 nm when the diode is biased in short circuit condition, while an error below 1 K/µW results in the temperature measurement when a forward bias current higher than 25 µA/cm2 is applied.

14.
ACS Appl Mater Interfaces ; 16(7): 9428-9435, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330497

RESUMO

High-quality passivation with intrinsic hydrogenated amorphous Si (i-a-Si:H) is essential for achieving high-efficiency Si heterojunction (SHJ) solar cells. The formation of i-a-Si:H with a high passivation quality requires strict control of the hydrogen content and film density. In this study, we report the effective discovery of i-a-Si:H deposition conditions through catalytic chemical vapor deposition using Bayesian optimization (BO) to maximize the passivation performance. Another contribution of this study to materials science is the establishment of a practical BO scheme consisting of several prediction models in order to account for the practical constraints. By applying the BO scheme, effective minority carrier lifetime (τeff) is maximized within the deposition condition range, while being constrained by the i-a-Si:H thickness and the capabilities of the experimental setup. We achieved a high passivation performance of τeff > 2.6 ms with only 8 cycles in BO, starting with 14 initial samples. Within the investigated range, the deposition conditions were further explored over 20 cycles. The BO provided not only optimal deposition conditions but also scientific knowledge. Contour plots of the predicted τeff values obtained through the BO process demonstrated that there is a band-like high τeff condition in the parameter space between the substrate temperature and SiH4 flow rate. The high void fraction and epitaxial growth were inhibited by controlling the substrate temperature and SiH4 flow rate, resulting in a high passivation quality. This indicates that the combination of the SiH4 flow rate and substrate temperature parameters is crucial to passivation quality. These results can be applied to determine the deposition conditions for a good a-Si:H layer without a high void fraction or epitaxial growth. The research methods shown in this study, practical BO scheme, and further analysis based on the optimized results will be also useful to optimize and analyze the process conditions of semiconductor processes including plasma-enhanced chemical vapor deposition for SHJ solar cells.

15.
Nanomaterials (Basel) ; 14(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38251167

RESUMO

Silicon is a promising alternative to graphite as an anode material in lithium-ion batteries, thanks to its high theoretical lithium storage capacity. Despite these high expectations, silicon anodes still face significant challenges, such as premature battery failure caused by huge volume changes during charge-discharge processes. To solve this drawback, using amorphous silicon as a thin film offers several advantages: its amorphous nature allows for better stress mitigation and it can be directly grown on current collectors for material savings and improved Li-ion diffusion. Furthermore, its conductivity is easily increased through doping during its growth. In this work, we focused on a comprehensive study of the influence of both electrical and structural properties of intrinsic and doped hydrogenated amorphous silicon (aSi:H) thin-film anodes on the specific capacity and stability of lithium-ion batteries. This study allows us to establish that hydrogen distribution in the aSi:H material plays a pivotal role in enhancing battery capacity and longevity, possibly masking the significance of the conductivity in the case of doped electrodes. Our findings show that we were able to achieve high initial specific capacities (3070 mAhg-1 at the 10th cycle), which can be retained at values higher than those of graphite for a significant number of cycles (>120 cycles), depending on the structural properties of the aSi:H films. To our knowledge, this is the first comprehensive study of the influence of these properties of thin films with different doping levels and hydrogen distributions on their optimization and use as anodes in lithium-ion batteries.

16.
Med Phys ; 51(6): 4489-4503, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432192

RESUMO

BACKGROUND: The increasing use of complex and high dose-rate treatments in radiation therapy necessitates advanced detectors to provide accurate dosimetry. Rather than relying on pre-treatment quality assurance (QA) measurements alone, many countries are now mandating the use of in vivo dosimetry, whereby a dosimeter is placed on the surface of the patient during treatment. Ideally, in vivo detectors should be flexible to conform to a patient's irregular surfaces. PURPOSE: This study aims to characterize a novel hydrogenated amorphous silicon (a-Si:H) radiation detector for the dosimetry of therapeutic x-ray beams. The detectors are flexible as they are fabricated directly on a flexible polyimide (Kapton) substrate. METHODS: The potential of this technology for application as a real-time flexible detector is investigated through a combined dosimetric and flexibility study. Measurements of fundamental dosimetric quantities were obtained including output factor (OF), dose rate dependence (DPP), energy dependence, percentage depth dose (PDD), and angular dependence. The response of the a-Si:H detectors investigated in this study are benchmarked directly against commercially available ionization chambers and solid-state diodes currently employed for QA practices. RESULTS: The a-Si:H detectors exhibit remarkable dose linearities in the direct detection of kV and MV therapeutic x-rays, with calibrated sensitivities ranging from (0.580 ± 0.002) pC/cGy to (19.36 ± 0.10) pC/cGy as a function of detector thickness, area, and applied bias. Regarding dosimetry, the a-Si:H detectors accurately obtained OF measurements that parallel commercially available detector solutions. The PDD response closely matched the expected profile as predicted via Geant4 simulations, a PTW Farmer ionization chamber and a PTW ROOS chamber. The most significant variation in the PDD performance was 5.67%, observed at a depth of 3 mm for detectors operated unbiased. With an external bias, the discrepancy in PDD response from reference data was confined to ± 2.92% for all depths (surface to 250 mm) in water-equivalent plastic. Very little angular dependence is displayed between irradiations at angles of 0° and 180°, with the most significant variation being a 7.71% decrease in collected charge at a 110° relative angle of incidence. Energy dependence and dose per pulse dependence are also reported, with results in agreement with the literature. Most notably, the flexibility of a-Si:H detectors was quantified for sample bending up to a radius of curvature of 7.98 mm, where the recorded photosensitivity degraded by (-4.9 ± 0.6)% of the initial device response when flat. It is essential to mention that this small bending radius is unlikely during in vivo patient dosimetry. In a more realistic scenario, with a bending radius of 15-20 mm, the variation in detector response remained within ± 4%. After substantial bending, the detector's photosensitivity when returned to a flat condition was (99.1 ± 0.5)% of the original response. CONCLUSIONS: This work successfully characterizes a flexible detector based on thin-film a-Si:H deposited on a Kapton substrate for applications in therapeutic x-ray dosimetry. The detectors exhibit dosimetric performances that parallel commercially available dosimeters, while also demonstrating excellent flexibility results.


Assuntos
Radiometria , Silício , Radiometria/instrumentação , Hidrogênio , Dosimetria in Vivo , Terapia por Raios X/instrumentação , Humanos
17.
Adv Mater ; 36(5): e2306513, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37823403

RESUMO

For decades, mechanical resonators with high sensitivity have been realized using thin-film materials under high tensile loads. Although there are remarkable strides in achieving low-dissipation mechanical sensors by utilizing high tensile stress, the performance of even the best strategy is limited by the tensile fracture strength of the resonator materials. In this study, a wafer-scale amorphous thin film is uncovered, which has the highest ultimate tensile strength ever measured for a nanostructured amorphous material. This silicon carbide (SiC) material exhibits an ultimate tensile strength of over 10 GPa, reaching the regime reserved for strong crystalline materials and approaching levels experimentally shown in graphene nanoribbons. Amorphous SiC strings with high aspect ratios are fabricated, with mechanical modes exceeding quality factors 108 at room temperature, the highest value achieves among SiC resonators. These performances are demonstrated faithfully after characterizing the mechanical properties of the thin film using the resonance behaviors of free-standing resonators. This robust thin-film material has significant potential for applications in nanomechanical sensors, solar cells, biological applications, space exploration, and other areas requiring strength and stability in dynamic environments. The findings of this study open up new possibilities for the use of amorphous thin-film materials in high-performance applications.

18.
Biosensors (Basel) ; 14(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38391991

RESUMO

One of the main challenges to be faced in deep space missions is to protect the health and ensure the maximum efficiency of the crew by preparing methods of prevention and in situ diagnosis. Indeed, the hostile environment causes important health problems, ranging from muscle atrophy, osteopenia, and immunological and metabolic alterations due to microgravity, to an increased risk of cancer caused by exposure to radiation. It is, therefore, necessary to provide new methods for the real-time measurement of biomarkers suitable for deepening our knowledge of the effects of space flight on the balance of the immune system and for allowing the monitoring of the astronaut's health during long-term missions. APHRODITE will enable human space exploration because it fills this void that affects both missions in LEO and future missions to the Moon and Mars. Its scientific objectives are the design, production, testing, and in-orbit demonstration of a compact, reusable, and reconfigurable system for performing the real-time analysis of oral fluid samples in manned space missions. In the frame of this project, a crew member onboard the ISS will employ APHRODITE to measure the selected target analytes, cortisol, and dehydroepiandrosterone sulfate (DHEA-S), in oral fluid, in four (plus one additional desired session) separate experiment sessions. The paper addresses the design of the main subsystems of the analytical device and the preliminary results obtained during the first implementations of the device subsystems and testing measurements on Earth. In particular, the system design and the experiment data output of the lab-on-chip photosensors and of the front-end readout electronics are reported in detail along with preliminary chemical tests for the duplex competitive CL-immunoassay for the simultaneous detection of cortisol and DHEA-S. Different applications also on Earth are envisaged for the APHRODITE device, as it will be suitable for point-of-care testing applications (e.g., emergency medicine, bioterrorism, diagnostics in developing countries, etc.).


Assuntos
Técnicas Biossensoriais , Voo Espacial , Humanos , Hidrocortisona , Desenho de Equipamento , Desidroepiandrosterona
19.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607117

RESUMO

Silicon nitride (Si3N4) is an ideal candidate for the development of low-loss photonic integrated circuits. However, efficient light coupling between standard optical fibers and Si3N4 chips remains a significant challenge. For vertical grating couplers, the lower index contrast yields a weak grating strength, which translates to long diffractive structures, limiting the coupling performance. In response to the rise of hybrid photonic platforms, the adoption of multi-layer grating arrangements has emerged as a promising strategy to enhance the performance of Si3N4 couplers. In this work, we present the design of high-efficiency surface grating couplers for the Si3N4 platform with an amorphous silicon (α-Si) overlay. The surface grating, fully formed in an α-Si waveguide layer, utilizes subwavelength grating (SWG)-engineered metamaterials, enabling simple realization through single-step patterning. This not only provides an extra degree of freedom for controlling the fiber-chip coupling but also facilitates portability to existing foundry fabrication processes. Using rigorous three-dimensional (3D) finite-difference time-domain (FDTD) simulations, a metamaterial-engineered grating coupler is designed with a coupling efficiency of -1.7 dB at an operating wavelength of 1.31 µm, with a 1 dB bandwidth of 31 nm. Our proposed design presents a novel approach to developing high-efficiency fiber-chip interfaces for the silicon nitride integration platform for a wide range of applications, including datacom and quantum photonics.

20.
Phys Med Biol ; 69(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39019068

RESUMO

Objective.Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features.Approach.Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC).Results.The sensitivity of the NIP + CSC detector was greater than the NIP detector for all measurement conditions. At 1 V and 0 kGy under the 3T Cu-Cu synchrotron broadbeam, the NIP + CSC detector sensitivity of (7.76 ± 0.01) pC cGy-1outperformed the NIP detector sensitivity of (3.55 ± 0.23) pC cGy-1by 219%. The energy dependence of both detectors matches closely to the attenuation coefficient ratio of silicon against water. Radiation damage measurements of both detectors out to 40 kGy revealed a higher radiation tolerance in the NIP detector compared to the NIP + CSC (17.2% and 33.5% degradations, respectively). Percentage depth dose profiles matched the PTW microDiamond detector's performance to within ±6% for all beam filtrations except in 3T Al-Al due to energy dependence. The 3T Cu-Cu microbeam field profile was reconstructed and returned microbeam width and peak-to-peak values of (51 ± 1)µm and (405 ± 5)µm, respectively. The peak-to-valley dose ratio was measured as a function of depth and agrees within error to the values obtained with the PTW microDiamond. X-ray beam induced charge mapping of the detector revealed minimal dose perturbations from extra-cameral materials.Significance.The detectors are comparable to commercially available dosimeters for quality assurance in MRT. With added benefits of being micron-sized and possessing a flexible water-equivalent substrate, these detectors are attractive candidates for quality assurance,in-vivodosimetry and in-line beam monitoring for MRT and FLASH therapy.


Assuntos
Radiometria , Silício , Silício/química , Radiometria/instrumentação , Hidrogênio , Radioterapia/instrumentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa