Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38713196

RESUMO

The genus Exophiala is polymorphic, able to transition between yeast, hyphal and pseudohyphal forms. Species of the genus Exophiala are ubiquitous fungi that are distributed in various environments around the world. During a survey of fungal diversity in the gut of amphipods (Floresorchestia amphawaensis and undescribed Dogielinotid amphipods) from the Amphawa estuary, Samut Songkhram province, Thailand, five black yeast strains (DMKU-MG01, DMKU-MG07, DMKU-MG08, DMKU-HG10 and DMKU-FG04) were identified as representing a novel taxon on the basis of a combination of morphological and molecular phylogenetic features. The five strains did not produce filamentous hyphae or pseudohyphae. Only budding yeast cells were observed. On the basis of the phenotypic characteristics and the results of molecular analyses of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, the five strains were identified as representing a novel species via applied nucleotide pairwise analysis. They differed from the most closely related species Exophiala alcalophiala by 3.54 % nucleotide substitutions (20 nucleotide substitutions in 572 bp) in the D1/D2 domains of the LSU rRNA gene. Moreover, the sequences of the ITS region of the five strains differed from those of the most closely related species E. alcalophiala, by 7.44-9.62 % nucleotide substitutions, and Exophiala halophiala, by 7.2-7.53 % nucleotide substitutions. The results of phylogenetic analyses based on the concatenated sequences of the ITS regions and the D1/D2 domains of the LSU rRNA gene confirmed that the five black yeast strains represented a single novel species of the genus Exophiala. In this study, Exophiala amphawaensis sp. nov. is proposed to accommodate these strains. The holotype is TBRC 15626T and the isotype is PYCC9020. The MycoBank accession number of the novel species is MB 851477.


Assuntos
Anfípodes , DNA Fúngico , DNA Espaçador Ribossômico , Exophiala , Filogenia , Análise de Sequência de DNA , Animais , Tailândia , Anfípodes/microbiologia , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Exophiala/genética , Exophiala/isolamento & purificação , Exophiala/classificação , Técnicas de Tipagem Micológica , Trato Gastrointestinal/microbiologia
2.
Environ Sci Technol ; 57(29): 10591-10603, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37341092

RESUMO

Exposure to chemical pollution can induce genetic and epigenetic alterations, developmental changes, and reproductive disorders, leading to population declines in polluted environments. These effects are triggered by chemical modifications of DNA nucleobases (DNA adducts) and epigenetic dysregulation. However, linking DNA adducts to the pollution load in situ remains challenging, and the lack of evidence-based DNA adductome response to pollution hampers the development and application of DNA adducts as biomarkers for environmental health assessment. Here, we provide the first evidence for pollution effects on the DNA modifications in wild populations of Baltic sentinel species, the amphipod Monoporeia affinis. A workflow based on high-resolution mass spectrometry to screen and characterize genomic DNA modifications was developed, and its applicability was demonstrated by profiling DNA modifications in the amphipods collected in areas with varying pollution loads. Then, the correlations between adducts and the contaminants level (polycyclic aromatic hydrocarbons (PAHs), trace metals, and pollution indices) in the sediments at the collection sites were evaluated. A total of 119 putative adducts were detected, and some (5-me-dC, N6-me-dA, 8-oxo-dG, and dI) were structurally characterized. The DNA adductome profiles, including epigenetic modifications, differed between the animals collected in areas with high and low contaminant levels. Furthermore, the correlations between the adducts and PAHs were similar across the congeners, indicating possible additive effects. Also, high-mass adducts had significantly more positive correlations with PAHs than low-mass adducts. By contrast, correlations between the DNA adducts and trace metals were stronger and more variable than for PAHs, indicating metal-specific effects. These associations between DNA adducts and environmental contaminants provide a new venue for characterizing genome-wide exposure effects in wild populations and apply DNA modifications in the effect-based assessment of chemical pollution.


Assuntos
Adutos de DNA , Hidrocarbonetos Policíclicos Aromáticos , Animais , DNA , Poluição Ambiental/análise , Sedimentos Geológicos/química
3.
Mar Drugs ; 21(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38132922

RESUMO

In this work, we extracted chitosan from marine amphipods associated with aquaculture facilities and tested its use in crop protection. The obtained chitosan was 2.5 ± 0.3% of initial ground amphipod dry weight. The chemical nature of chitosan from amphipod extracts was confirmed via Raman scattering spectroscopy and Fourier transform infrared spectroscopy (FTIR). This chitosan showed an 85.7-84.3% deacetylation degree. Chitosan from biofouling amphipods at 1 mg·mL-1 virtually arrested conidia germination (ca. sixfold reduction from controls) of the banana wilt pathogenic fungus Fusarium oxysporum f. sp cubense Tropical Race 4 (FocTR4). This concentration reduced (ca. twofold) the conidia germination of the biocontrol fungus Pochonia chlamydosporia (Pc123). Chitosan from amphipods at low concentrations (0.01 mg·mL-1) still reduced FocTR4 germination but did not affect Pc123. This is the first time that chitosan is obtained from biofouling amphipods. This new chitosan valorizes aquaculture residues and has potential for biomanaging the diseases of food security crops such as bananas.


Assuntos
Anfípodes , Quitosana , Fusarium , Musa , Animais , Musa/microbiologia , Quitosana/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fungos
4.
Environ Monit Assess ; 195(2): 344, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715783

RESUMO

It is crucial to understand the effects caused by experimental parameters such as temperature, light, and food type on lab and field-based ecotoxicology experiments, as these variables, and combinations thereof, can affect results. The type of substrate used in exposure experiments, however, is generally assumed to have no effect. This may not always be correct. The metabolic changes in the freshwater crustacean, Austrochiltonia subtenuis exposed to copper, using three common substrates, gauze; toilet paper; and cellulose were investigated. Substrate alone did not affect survival, but each substrate elicited a different metabolic response and adult and juvenile amphipods had different substrate preferences. Several classes of metabolites were shown to change in response to different substrates and toxicant. These included disaccharides, monosaccharides, fatty acids, and tricarboxylic acid cycle intermediates. The results illustrate that metabolomic responses can differ in response to experimental factors that were previously thought not to be significant. In fact, our data indicate that substrate should be viewed as an experimental factor as important to control for as more well-known confounders such as temperature or food, thus challenging the current paradigm. Assuming substrate type has no effect on the experiment could potentially lead to errors in contaminant toxicity assessments. We propose that ideal good practise would be that all experimental factors should be evaluated for their potential influence on metabolomic profiles prior to contaminant response experiments being undertaken.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Ecotoxicologia , Monitoramento Ambiental , Água Doce , Substâncias Perigosas , Poluentes Químicos da Água/toxicidade
5.
Oecologia ; 199(2): 377-386, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35678931

RESUMO

The behavioural choices made by foragers regarding the use of resource patches have a direct influence on the energy balance of the individual. Given that several individual traits linked to the acquisition of spatially distributed resources increase with body size (e.g., energy requirements, resource ingestion rates, and movement capacity), it is reasonable to expect size dependencies in overall foraging behaviour. In this study, we tested how body size influences the number, duration, and frequency of foraging episodes in heterogeneous resource patches. To this end, we performed microcosm experiments using the aquatic amphipod Gammarus insensibilis as a model organism. An experimental maze was used to simulate a habitat characterised by resource-rich, resource-poor, and empty patches under controlled conditions. The patch use behaviour of 40 differently sized specimens foraging alone in the experimental maze was monitored via an advanced camera setup. Overall, we observed that individual body size exerted a major influence on the use of resource patches over time. Larger individuals had stronger preference for the resource-rich patches initially and visited them more frequently than smaller individuals, but for shorter periods of time. However, larger individuals subsequently decreased their use of resource-rich patches in favour of resource-poor patches, while smaller individuals continued to prefer resource-rich patches for the whole experimental time. With body size being a key organismal trait, our observations support the general understanding of foraging behaviours related to preference, patch use, and abandonment.


Assuntos
Anfípodes , Animais , Tamanho Corporal , Ecossistema , Comportamento Alimentar , Humanos
6.
Ecotoxicol Environ Saf ; 236: 113456, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35395599

RESUMO

Secondary salinization of freshwater is becoming a growing environmental problem. Currently, there is few data available on the effects of salinisation on subterranean crustaceans that are vital for the maintenance of groundwater ecosystem functioning. In this study, the sensitivity of subterranean Niphargus amphipods to NaCl was investigated. We expected that cave-dwelling species would be more sensitive as surface-subterranean boundary species. Eight ecologically different Niphargus species were tested: four live at the boundary between the surface and subterranean ecosystems (N. timavi, N. krameri, N. sphagnicolus, N. spinulifemur), three live in cave streams (N. stygius, N. scopicauda, N. podpecanus), and one species (N. hebereri) lives in anchialine caves and wells. The organisms were exposed to five concentrations of NaCl for 96 h and afterwards the immobility, mortality, and electron transfer system (ETS) activity (a measure for metabolic rate of animals) were evaluated. As expected, the most tolerant species was N. hebereri dwelling in naturally high-salinity habitat. However, contrary to our expectations, the species collected at the surface-subterranean boundary were more sensitive as cave stream species when their immobility and mortality were assessed. Interestingly, the majority of Niphargus tested were more NaCl tolerant as can be deduced from currently available data for subterranean and surface crustaceans. We could not observe a clear trend in ETS activity changes between groups of surface-subterranean boundary and cave streams species after exposure to NaCl stress, but it appears that osmotic stress-induced metabolic rate changes are species-specific. This study shows that amphipods Niphargus can be a valuable subterranean environmental research model and further ecotoxicity research is of interest.


Assuntos
Anfípodes , Animais , Cavernas , Ecossistema , Salinidade , Cloreto de Sódio
7.
Ecotoxicol Environ Saf ; 236: 113474, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390685

RESUMO

Modern wastewater treatment plants cannot completely remove pollutants. Often, effluents entering the aquatic environment still contain micropollutants such as pharmaceuticals or pesticides, which may impose adverse effects on aquatic biota. At the same time, a large proportion of free-living aquatic species are known to be infected with parasites, which raises the question of interactions between environmental stressors (such as micropollutants) and parasite infection. We chose the freshwater amphipod Gammarus fossarum (Koch, 1835) as a test organism to investigate potential pollutant-parasite interactions. This gammarid is frequently used in ecotoxicological tests and is also commonly infected with larvae of the acanthocephalan parasite species Polymorphus minutus (Zeder, 1800) Lühe, 1911. We exposed infected and uninfected specimens of G. fossarum to conventionally-treated wastewater and river water in a 22-day flow channel experiment. The test organisms' response was measured as mortality rates, concentrations or activities of five biomarkers, and overall locomotor activity. No significant differences were found between mortality rates of different exposure conditions. Contrastingly, three biomarkers (phenoloxidase activity, glycogen, and lipid concentrations) showed a significant increase in infected gammarids, while the effect of the water type was insignificant. Infected gammarids also showed a significantly higher locomotor activity in both water types. Our results suggest that the response of G. fossarum during the exposure experiments was mainly driven by parasite infection. This implies that parasites may act as additional biotic stressors in multiple stressor scenarios, and therefore, might play an important role when measuring the response of organisms to chemical stressors. Future ecotoxicological studies and assessments thus should consider parasite infection as an additional test parameter.


Assuntos
Acantocéfalos , Anfípodes , Doenças Parasitárias , Poluentes Químicos da Água , Acantocéfalos/fisiologia , Anfípodes/fisiologia , Animais , Biomarcadores , Interações Hospedeiro-Parasita , Locomoção , Águas Residuárias/toxicidade , Água , Poluentes Químicos da Água/toxicidade
8.
Environ Monit Assess ; 194(Suppl 1): 742, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255480

RESUMO

The waters adjacent to the northeastern coast of Sakhalin Island, Russia, are an important feeding ground for the endangered western gray whale. Data on the energy available to foraging whales from their prey resources is required for researchers interested in modeling the bioenergetics of whale foraging, but little energy content information is available for the benthic prey communities of gray whales in this region. In this study, we describe the energy density (ED), biomass, and total energy availability (ED × biomass) of benthic prey sampled from two gray whale foraging areas adjacent to Sakhalin Island: the nearshore and offshore feeding areas. ED varied almost seven-fold among benthic taxa, ranging from 1.11 to 7.62 kJ/g wet mass. Although there was considerable variation within most prey groups, amphipods had the highest mean ED of all of groups examined (5.58 ± 1.44 kJ/g wet mass). Small sample sizes precluded us from detecting any seasonal or spatial differences in mean ED within or among taxa; however, mean biomass in the offshore feeding area was, in some cases, an order of magnitude higher than mean estimates in the nearshore feeding area, resulting in higher mean total energy available to foraging gray whales offshore (958-3313 kJ/m2) compared to nearshore (223-495 kJ/m2). While the proportion of total energy accounted for by amphipods was variable, this prey group generally made up a higher proportion of the total energy available in the benthos of the offshore feeding area than in the benthos of the nearshore feeding area. Data presented here will be used to inform bioenergetics modeling of the vital rates of mature females in an effort to improve understanding of population growth limits for western gray whales.


Assuntos
Anfípodes , Baleias , Animais , Feminino , Monitoramento Ambiental , Biomassa , Coleta de Dados
9.
Proc Biol Sci ; 288(1948): 20210216, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33823669

RESUMO

Nervous systems across Animalia not only share a common blueprint at the biophysical and molecular level, but even between diverse groups of animals the structure and neuronal organization of several brain regions are strikingly conserved. Despite variation in the morphology and complexity of eyes across malacostracan crustaceans, many studies have shown that the organization of malacostracan optic lobes is highly conserved. Here, we report results of divergent evolution to this 'neural ground pattern' discovered in hyperiid amphipods, a relatively small group of holopelagic malacostracan crustaceans that possess an unusually wide diversity of compound eyes. We show that the structure and organization of hyperiid optic lobes has not only diverged from the malacostracan ground pattern, but is also highly variable between closely related genera. Our findings demonstrate a variety of trade-offs between sensory systems of hyperiids and even within the visual system alone, thus providing evidence that selection has modified individual components of the central nervous system to generate distinct combinations of visual centres in the hyperiid optic lobes. Our results provide new insights into the patterns of brain evolution among animals that live under extreme conditions.


Assuntos
Anfípodes , Lobo Óptico de Animais não Mamíferos , Animais , Encéfalo , Olho , Neurônios
10.
Rev Environ Contam Toxicol ; 253: 1-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31605212

RESUMO

Freshwater Gammarids are common leaf-shredding detritivores, and they usually feed on naturally conditioned organic material, in other words leaf litter that is characterised by an increased palatability, due to the action and presence of microorganisms (Chaumot et al. 2015; Cummins 1974: Maltby et al. 2002). Gammarus spp. are biologically omnivorous organisms, so they are involved in shredding leaf litter and are also prone to cannibalism, predation behaviour (Kelly et al. 2002) and coprophagy when juveniles (McCahon and Pascoe 1988). Gammarus spp. is a keystone species (Woodward et al. 2008), and it plays an important role in the decomposition of organic matter (Alonso et al. 2009; Bundschuh et al. 2013) and is also a noteworthy prey for fish and birds (Andrén and Eriksson Wiklund 2013; Blarer and Burkhardt-Holm 2016). Gammarids are considered to be fairly sensitive to different contaminants (Ashauer et al. 2010; Bloor et al. 2005; Felten et al. 2008a; Lahive et al. 2015; Kunz et al. 2010); in fact Amphipods have been reported to be one of the most sensitive orders to metals and organic compounds (Wogram and Liess 2001), which makes them representative test organisms for ecotoxicological studies and valid sentinel species for assessing water quality status (Garcia-Galan et al. 2017).


Assuntos
Anfípodes , Ecotoxicologia , Comportamento Alimentar , Animais , Água Doce , Folhas de Planta
11.
Bull Environ Contam Toxicol ; 106(5): 759-764, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33754160

RESUMO

The exposure to environmentally relevant chlorpyrifos concentrations (0.03, 0.06 and 0.12 µg chlorpyrifos L-1) causes increases in precopulatory guardian behavior time, amplexus reformulation after exposure and in the number of ovigerous females in the amphipod Hyalella curvispina. Effects in incubation period, effective hatching and median lethal concentration on the decapods Macrobrachium borellii and Aegla uruguayana, both in adults and embryos, were achieved at higher concentrations than those found in the environment. Environmentally relevant chlorpyrifos concentrations appear not to affect decapods but several effects in reproductive traits of amphipods were observed.


Assuntos
Anfípodes , Clorpirifos , Poluentes Químicos da Água , Animais , Clorpirifos/toxicidade , Feminino , Água Doce , Reprodução , Poluentes Químicos da Água/toxicidade
12.
Mol Phylogenet Evol ; 144: 106710, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846708

RESUMO

The evolution of tRNA genes in mitochondrial (mt) genomes is a complex process that includes duplications, degenerations, and transpositions, as well as a specific process of identity change through mutations in the anticodon (tRNA gene remolding or tRNA gene recruitment). Using amphipod-specific tRNA models for annotation, we show that tRNA duplications are more common in the mt genomes of amphipods than what was revealed by previous annotations. Seventeen cases of tRNA gene duplications were detected in the mt genomes of amphipods, and ten of them were tRNA genes that underwent remolding. The additional tRNA gene findings were verified using phylogenetic analysis and genetic distance analysis. The majority of remolded tRNA genes (seven out of ten cases) were found in the mt genomes of endemic amphipod species from Lake Baikal. All additional mt tRNA genes arose independently in the Baikalian amphipods, indicating the unusual plasticity of tRNA gene evolution in these species assemblages. The possible reasons for the unusual abundance of additional tRNA genes in the mt genomes of Baikalian amphipods are discussed. The amphipod-specific tRNA models developed for MiTFi refine existing predictions of tRNA genes in amphipods and reveal additional cases of duplicated tRNA genes overlooked by using less specific Metazoa-wide models. The application of these models for mt tRNA gene prediction will be useful for the correct annotation of mt genomes of amphipods and probably other crustaceans.


Assuntos
Anfípodes/classificação , Anfípodes/genética , Duplicação Gênica , Genoma Mitocondrial/genética , RNA de Transferência/genética , Animais , Evolução Molecular , Genes Mitocondriais/fisiologia , Especiação Genética , Lagos , Mutação , Filogenia , Filogeografia , Sibéria
13.
Parasitol Res ; 119(10): 3359-3368, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32893331

RESUMO

Acanthocephalans are multi-host endoparasites, many of which use freshwater amphipods as intermediate hosts for their larval stages (e.g., cystacanths) while adults live in the intestines of vertebrates, including waterfowl. In central Alberta, Canada, several co-occurring species of the acanthocephalan genus Polymorphus use the amphipod Gammarus lacustris Sars, 1863 as an intermediate host. We applied DNA barcoding and morphometric analysis to differentiate cystacanth larvae from G. lacustris sampled from 17 Albertan water bodies. We slide-mounted specimens and measured morphological traits relating to proboscis hooks. We sequenced the standard DNA barcoding region of the mitochondrial cytochrome c oxidase subunit I gene (COI). Morphometric analysis suggested that the acanthocephalans we collected belonged to four morphologically different groups that keyed to Polymorphus contortus (Bremser, 1821) Travassos, 1926; P. marilis Van Cleave, 1939; P. paradoxus Connel et Corner, 1957; and P. strumosoides (Lundström, 1942) Amin, 2013. Our Bayesian tree based on COI sequences generally corroborated the morphological results and supported that the specimens assigned to P. cf. contortus and P. cf. strumosoides belong to two distinct species. In contrast, the Bayesian tree showed that specimens of P. cf. marilis were nested as a cluster within the P. cf. paradoxus clade. Similarly, small pairwise genetic distance (< 2%) between specimens identified as P. cf. contortus and P. cf. strumosoides suggests that they are conspecific. Future studies should use morphology and sequence data from adult acanthocephalans to assess the taxonomic identity of the cystacanth-based Polymorphus taxa. Our study is the first to provide genetic information for the four Polymorphus taxa and emphasizes the importance of applying multiple approaches to differentiate parasite species.


Assuntos
Acantocéfalos/classificação , Acantocéfalos/anatomia & histologia , Acantocéfalos/genética , Alberta , Anfípodes/parasitologia , Animais , Código de Barras de DNA Taxonômico , Água Doce/parasitologia , Genes de Helmintos/genética , Genes Mitocondriais/genética , Larva/anatomia & histologia , Larva/classificação , Larva/genética , Especificidade da Espécie
14.
BMC Evol Biol ; 19(1): 138, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286865

RESUMO

BACKGROUND: The ancient Lake Baikal is characterized by an outstanding diversity of endemic faunas with more than 350 amphipod species and subspecies. We determined the genetic diversity within the endemic littoral amphipod species Eulimnogammarus verrucosus, E. cyaneus and E. vittatus and investigated whether within those species genetically separate populations occur across Lake Baikal. Gammarus lacustris from water bodies in the Baikal area was examined for comparison. RESULTS: Genetic diversities within a species were determined based on fragments of cytochrome c oxidase I (COI) and for E. verrucosus additionally of 18S rDNA. Highly location-specific haplogroups of E. verrucosus and E. vittatus were found at the southern and western shores of Baikal that are separated by the Angara River outflow; E. verrucosus from the eastern shore formed a further, clearly distinct haplotype cluster possibly confined by the Selenga River and Angarskiy Sor deltas. The genetic diversities within these haplogroups were lower than between the different haplogroups. Intraspecific genetic diversities within E. verrucosus and E. vittatus with 13 and 10%, respectively, were similar to interspecies differences indicating the occurrence of cryptic, morphologically highly similar species; for E. verrucosus this was confirmed with 18S rDNA. The haplotypes of E. cyaneus and G. lacustris specimens were with intraspecific genetic distances of 3 and 2%, respectively, more homogeneous indicating no or only recent disruption of gene flow of E. cyaneus across Baikal and recent colonization of water bodies around Baikal by G. lacustris. CONCLUSIONS: Our finding of separation of subgroups of Baikal endemic amphipods to different degrees points to a species-specific ability of dispersal across areas with adverse conditions and to potential geographical dispersal barriers in Lake Baikal.


Assuntos
Anfípodes/genética , Especiação Genética , Lagos , Distribuição Animal , Animais , Variação Genética , Geografia
15.
Biol Lett ; 15(3): 20180865, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30836883

RESUMO

Dispersal can strongly influence ecological and evolutionary dynamics. Besides the direct contribution of dispersal to population dynamics, dispersers often differ in their phenotypic attributes from non-dispersers, which leads to dispersal syndromes. The consequences of such dispersal syndromes have been widely explored at the population and community level; however, to date, ecosystem-level effects remain unclear. Here, we examine whether dispersing and resident individuals of two different aquatic keystone invertebrate species have different contributions to detrital processing, a key function in freshwater ecosystems. Using experimental two-patch systems, we found no difference in leaf consumption rates with dispersal status of the common native species Gammarus fossarum. In Dikerogammarus villosus, however, a Ponto-Caspian species now expanding throughout Europe, dispersers consumed leaf litter at roughly three times the rate of non-dispersers. Furthermore, this put the contribution of dispersing D. villosus to leaf litter processing on par with native G. fossarum, after adjusting for differences in organismal size. Given that leaf litter decomposition is a key function in aquatic ecosystems, and the rapid species turnover in freshwater habitats with range expansions of non-native species, this finding suggests that dispersal syndromes may have important consequences for ecosystem functioning.


Assuntos
Anfípodes , Ecossistema , Animais , Europa (Continente) , Água Doce , Síndrome
16.
Oecologia ; 187(2): 483-494, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29404690

RESUMO

Increasing sea surface temperatures are predicted to alter marine plant-herbivore interactions and, thus, the structure and function of algal and seagrass communities. Given the fundamental role of host plant quality in determining herbivore fitness, predicting the effects of increased temperatures requires an understanding of how temperature may interact with diet quality. We used an herbivorous marine amphipod, Sunamphitoe parmerong, to test how temperature and diet interact to alter herbivore growth, feeding rates, survival, and fecundity in short- and long-term assays. In short-term thermal stress assays, S. parmerong was tolerant to the range of temperatures that it currently experiences in nature (20-26 °C), with mortality at temperatures > 27 °C. In longer term experiments, two generations of S. parmerong were reared in nine combinations of temperature (ambient, + 2, + 4 °C) and diet (two high- and one low-quality algal species) treatments. Temperature and diet interacted to determine total numbers of amphipods in the F1 generation and the potential F2 population size (sum of brooded eggs and newly hatched juveniles). The size and development rate of F1 individuals were affected by diet, but not temperature. Consumption rates per capita were highest at intermediate temperatures but could not explain the observed differences in survival. Our results show that predicting the effects of increasing temperature on marine herbivores will be complicated by variation in host plant quality, and that climate-driven changes to plant availability will affect herbivore performance, and thus the strength of plant-herbivore interactions.


Assuntos
Anfípodes , Herbivoria , Animais , Dieta , Plantas , Temperatura
17.
J Phycol ; 54(3): 368-379, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29533462

RESUMO

The persistence of floating seaweeds, which depends on abiotic conditions but also herbivory, had previously been mostly tested in outdoor mesocosm experiments. In order to investigate if the obtained mesocosm results of high seaweed persistence under natural environmental conditions and under grazing pressure can be extrapolated to field situations, we conducted in situ experiments. During two summers (2007 and 2008), Macrocystis pyrifera was tethered (for 14 d) to lines in the presence and absence of the amphipod Peramphithoe femorata at three sites (Iquique, Coquimbo, Calfuco). We hypothesized that grazing damage and seaweed persistence vary among sites due to different abiotic factors. By incubating the sporophytes in mesh bags, we were either able to isolate (grazing) or exclude (control) amphipods. To test for a mesh bag artifact, a set of sporophytes was incubated without mesh bags (natural). Mesh bags used to exclude herbivores influenced sporophyte growth and physiological performance. The chlorophyll a (Chl a) content depended largely on grazers and grazed sporophytes grew less than natural and control sporophytes within the two summers. A decrease in Chl a content was found for the sites with the highest prevailing irradiances and temperatures, suggesting an efficient acclimation to these sea surface conditions. Our field-based results of sporophyte acclimation ability even under grazing pressure widely align with previous mesocosm results. We conclude that M. pyrifera and other temperate floating seaweeds can function as long-distance dispersal vectors even with hitchhiking mesoherbivores.


Assuntos
Aclimatação , Anfípodes/fisiologia , Meio Ambiente , Cadeia Alimentar , Macrocystis/fisiologia , Animais , Biomassa , Chile , Herbivoria , Macrocystis/crescimento & desenvolvimento , Fotossíntese , Dinâmica Populacional
18.
Ecotoxicology ; 27(9): 1237-1248, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30191521

RESUMO

A whole-sediment test with the infaunal amphipod Monocorophium insidiosum has been developed to assess the long-term effects exerted by sediment contamination on survival, growth rates and attainment of sexual maturity. Juvenile amphipods were exposed for 28 days to a control sediment (native sediment) and three sediment samples collected in sites of the Venice Lagoon, characterized by contamination levels ranging from low to moderate, and absence of acute toxicity toward amphipods. Growth rate was estimated as daily length (µm d-1) and weight increments (µg d-1). The long-term exposure to the test sediments affected significantly both growth rate and attainment of sexual maturity of the females of M. insidiosum. In contrast, survival was high and uniform among all the samples, despite the contamination gradient. The results suggest growth to be the more reliable and statistically relevant endpoint. Attainment of sexual maturity, although allowed the identification of detrimental effects, was affected by a higher among-replicates variance as compared with growth rates, and thus less reliable than growth for the identification of impairments. The significant impairments observed both on growth and attainment of maturity evidenced the need to address the monitoring, also in the Lagoon of Venice, towards the assessment of the long-term effects on benthic species.


Assuntos
Anfípodes/fisiologia , Sedimentos Geológicos , Testes de Toxicidade Crônica/métodos , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Testes de Toxicidade Crônica/normas
19.
Antonie Van Leeuwenhoek ; 110(12): 1593-1611, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28721507

RESUMO

The emergence of pathogenic bacteria resistant to antibiotics increases the need for discovery of new effective antimicrobials. Unique habitats such as marine deposits, wetlands and caves or unexplored biological communities are promising sources for the isolation of actinobacteria, which are among the major antibiotic producers. The present study aimed at examining cultivated actinobacteria strains associated with endemic Lake Baikal deepwater amphipods and estimating their antibiotic activity. We isolated 42 actinobacterial strains from crustaceans belonging to Ommatogammarus albinus and Ommatogammarus flavus. To our knowledge, this is the first report describing the isolation and initial characterization of representatives of Micromonospora and Pseudonocardia genera from Baikal deepwater invertebrates. Also, as expected, representatives of the genus Streptomyces were the dominant group among the isolated species. Some correlations could be observed between the number of actinobacterial isolates, the depth of sampling and the source of the strains. Nevertheless, >70% of isolated strains demonstrated antifungal activity. The dereplication analysis of extract of one of the isolated strains resulted in annotation of several known compounds that can help to explain the observed biological activities. The characteristics of ecological niche and lifestyle of deepwater amphipods suggests that the observed associations between crustaceans and isolated actinobacteria are not random and might represent long-term symbiotic interactions.


Assuntos
Actinobacteria/classificação , Actinobacteria/fisiologia , Anfípodes/microbiologia , Antibacterianos/biossíntese , Lagos/microbiologia , Microbiologia da Água , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Anim Cogn ; 19(4): 745-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26968427

RESUMO

Recognition of predation risk from cues released from injured heterospecific could be beneficial when prey belongs to the same prey guild. Here, we performed three experiments. Experiment 1 showed that P. thaul tadpoles reduced their activity levels when exposed to conspecific injury cues, but not when exposed to amphipod injury cues. Experiment 2 tested whether P. thaul tadpoles can learn to recognize predation risk from chemical cues released from injured heterospecifics from the same prey guild (amphipod, Hyalella patagonica). A group of tadpoles were conditioned by exposing them to a specific concentration of amphipod injury cues paired with conspecific injury cues. Two days later, we evaluated changes in the activity of tadpoles when they were exposed to amphipod cues. As a control of learning, we used an unpaired group. Additionally, we used more control groups to fully investigate the learning mechanism. Our results showed that tadpoles can learn to recognize predation risk from injured amphipods and that the mechanism underlying the observed learned response could be associative. Experiment 3 replicated Experiment 2 and also showed that a low concentration of amphipod cues did not sustain that learning.


Assuntos
Sinais (Psicologia) , Aprendizagem , Comportamento Predatório , Animais , Anuros , Larva
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa