Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(5): 101896, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378131

RESUMO

Ruminococcus bromii is a keystone species in the human gut that has the rare ability to degrade dietary resistant starch (RS). This bacterium secretes a suite of starch-active proteins that work together within larger complexes called amylosomes that allow R. bromii to bind and degrade RS. Starch adherence system protein 20 (Sas20) is one of the more abundant proteins assembled within amylosomes, but little could be predicted about its molecular features based on amino acid sequence. Here, we performed a structure-function analysis of Sas20 and determined that it features two discrete starch-binding domains separated by a flexible linker. We show that Sas20 domain 1 contains an N-terminal ß-sandwich followed by a cluster of α-helices, and the nonreducing end of maltooligosaccharides can be captured between these structural features. Furthermore, the crystal structure of a close homolog of Sas20 domain 2 revealed a unique bilobed starch-binding groove that targets the helical α1,4-linked glycan chains found in amorphous regions of amylopectin and crystalline regions of amylose. Affinity PAGE and isothermal titration calorimetry demonstrated that both domains bind maltoheptaose and soluble starch with relatively high affinity (Kd ≤ 20 µM) but exhibit limited or no binding to cyclodextrins. Finally, small-angle X-ray scattering analysis of the individual and combined domains support that these structures are highly flexible, which may allow the protein to adopt conformations that enhance its starch-targeting efficiency. Taken together, we conclude that Sas20 binds distinct features within the starch granule, facilitating the ability of R. bromii to hydrolyze dietary RS.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Ruminococcus , Amilopectina/metabolismo , Amilose/metabolismo , Proteínas de Transporte/metabolismo , Carboidratos da Dieta , Humanos , Amido/metabolismo
2.
J Biol Chem ; 298(6): 102049, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35597281

RESUMO

Not all starches in the human diet are created equal: "resistant starches" are consolidated aggregates of the α-glucan polysaccharides amylose and amylopectin, which escape digestion by salivary and pancreatic amylases. Upon reaching the large intestine, resistant starches become fodder for members of the human gut microbiota, impacting the metabolism of both the symbionts and the host. In a recent study, Koropatkin et al. provided new molecular insight into how a keystone bacterium in the human gut microbiota adheres to resistant starches as a prelude to their breakdown and fermentation.


Assuntos
Microbioma Gastrointestinal , Amido , Amilopectina/metabolismo , Amilose/metabolismo , Glucanos , Humanos , Amido/metabolismo , alfa-Amilases/metabolismo
3.
J Struct Biol ; 213(3): 107765, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186214

RESUMO

Pullulanases are glycoside hydrolase family 13 (GH13) enzymes that target α1,6 glucosidic linkages within starch and aid in the degradation of the α1,4- and α1,6- linked glucans pullulan, glycogen and amylopectin. The human gut bacterium Ruminococcus bromii synthesizes two extracellular pullulanases, Amy10 and Amy12, that are incorporated into the multiprotein amylosome complex that enables the digestion of granular resistant starch from the diet. Here we provide a comparative biochemical analysis of these pullulanases and the x-ray crystal structures of the wild type and the nucleophile mutant D392A of Amy12 complexed with maltoheptaose and 63-α-D glucosyl-maltotriose. While Amy10 displays higher catalytic efficiency on pullulan and cleaves only α1,6 linkages, Amy12 has some activity on α1,4 linkages suggesting that these enzymes are not redundant within the amylosome. Our structures of Amy12 include a mucin-binding protein (MucBP) domain that follows the C-domain of the GH13 fold, an atypical feature of these enzymes. The wild type Amy12 structure with maltoheptaose captured two oligosaccharides in the active site arranged as expected following catalysis of an α1,6 branch point in amylopectin. The nucleophile mutant D392A complexed with maltoheptaose or 63-α-D glucosyl-maltotriose captured ß-glucose at the reducing end in the -1 subsite, facilitated by the truncation of the active site aspartate and stabilized by stacking with Y279. The core interface between the co-crystallized ligands and Amy12 occurs within the -2 through + 1 subsites, which may allow for flexible recognition of α1,6 linkages within a variety of starch structures.


Assuntos
Glicosídeo Hidrolases , Ruminococcus , Glicosídeo Hidrolases/química , Humanos , Ruminococcus/genética , Ruminococcus/metabolismo , Amido/metabolismo , Especificidade por Substrato
4.
Bioresour Technol ; 388: 129760, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741579

RESUMO

Fungi-degrading artificial amylosomes were newly developed consisting of fungi-degrading enzyme (NAG), starch-degrading enzymes and a scaffold protein. Amylosome scaffolds containing starch-binding proteins (SbpCbpA and CCSbpCbpA) were highly bound to starch and fungal-spoiled food waste. Amylosomes showed an average of 1.43-fold higher reducing sugar production from starch. 2.00-fold α-amylase in amylosomes increased reducing sugar production from amylose by an average of 1.50-fold. At 70°C for 6 hours, SbpCbpA and CCSbpCbpA maintained an average activity of 56.42% compared to the control (38.37%). The enzyme mixture and amylosomes with NAG showed an average 1.31-fold increase in glucose production in response to fungal-spoiled food waste compared to samples without NAG; in particular, CCSbpCbpA with NAG produced 62.44 ± 0.03 mM glucose (2.55-fold of the enzyme mixture without NAG). This research strategy can be applicable to the starch and fungal-spoiled food waste saccharification in an ecofriendly manner, leading to sugar production in industrial fields.

5.
Food Sci Biotechnol ; 31(2): 231-241, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35186353

RESUMO

Resistant starch (RS) in the diet reaches the large intestine and is fermented by the gut microbiota, providing beneficial effects on human health. The human gut bacterium FMB-CY1 was isolated and identified as a new species closest to Ruminococcus bromii. Ruminococcus sp. FMB-CY1 completely degraded RS including commercial RS types 2, 3, and 4, and generated glucose and maltose; however, it did not assimilate glucose. Genome analysis revealed 15 amylolytic enzymes (Amy) present in FMB-CY1. The evolutionary trees revealed that the Amys were well divided each other. All Amys (4, 9, 10, 12, and 16) containing cohesin and/or dockerin and scaffolding proteins known to be involved in constituting the amylosome, were identified. A new species of Ruminococcus, strain FMB-CY1, was considered to have the ability to form amylosomes for the degradation of RS. This new RS-degrading Ruminococcus species provides insights into the mechanism(s) underlying RS degradation in the human gut. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-01027-2.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa