Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38980277

RESUMO

Many animals share a lifelong capacity to adapt their growth rates and body sizes to changing environmental food supplies. However, the cellular and molecular basis underlying this plasticity remains only poorly understood. We therefore studied how the sea anemones Nematostella vectensis and Aiptasia (Exaiptasia pallida) respond to feeding and starvation. Combining quantifications of body size and cell numbers with mathematical modelling, we observed that growth and shrinkage rates in Nematostella are exponential, stereotypic and accompanied by dramatic changes in cell numbers. Notably, shrinkage rates, but not growth rates, are independent of body size. In the facultatively symbiotic Aiptasia, we show that growth and cell proliferation rates are dependent on the symbiotic state. On a cellular level, we found that >7% of all cells in Nematostella juveniles reversibly shift between S/G2/M and G1/G0 cell cycle phases when fed or starved, respectively. Furthermore, we demonstrate that polyp growth and cell proliferation are dependent on TOR signalling during feeding. Altogether, we provide a benchmark and resource for further investigating the nutritional regulation of body plasticity on multiple scales using the genetic toolkit available for Nematostella.


Assuntos
Tamanho Corporal , Proliferação de Células , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/fisiologia , Ciclo Celular/fisiologia , Comportamento Alimentar/fisiologia , Transdução de Sinais , Simbiose , Serina-Treonina Quinases TOR/metabolismo
2.
Proteins ; 92(2): 192-205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794633

RESUMO

Diverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (KV 1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis. The ShKT domain has been found in numerous other species, but only a tiny fraction of ShKT domains has been characterized functionally. Despite adopting the canonical ShK fold, some ShKT peptides from sea anemones inhibit KV 1.x, while others do not. Mutagenesis studies have shown that a Lys-Tyr (KY) dyad plays a key role in KV 1.x blockade, although a cationic residue followed by a hydrophobic residue may also suffice. Nevertheless, ShKT peptides displaying an ShK-like fold and containing a KY dyad do not necessarily block potassium channels, so additional criteria are needed to determine whether new ShKT peptides might show activity against potassium channels. In this study, we used a combination of NMR and molecular dynamics (MD) simulations to assess the potential activity of a new ShKT peptide. We determined the structure of ShKT-Ts1, from the sea anemone Telmatactis stephensoni, examined its tissue localization, and investigated its activity against a range of ion channels. As ShKT-Ts1 showed no activity against KV 1.x channels, we used MD simulations to investigate whether solvent exposure of the dyad residues may be informative in rationalizing and potentially predicting the ability of ShKT peptides to block KV 1.x channels. We show that either a buried dyad that does not become exposed during MD simulations, or a partially exposed dyad that becomes buried during MD simulations, correlates with weak or absent activity against KV 1.x channels. Therefore, structure determination coupled with MD simulations, may be used to predict whether new sequences belonging to the ShKT family may act as potassium channel blockers.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/química , Peptídeos/farmacologia , Peptídeos/química , Canais de Potássio/metabolismo , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
3.
Am J Physiol Heart Circ Physiol ; 326(1): H89-H95, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947435

RESUMO

Long QT syndrome (LQTS) type 3 although less common than the first two forms, differs in that arrhythmic events are less likely triggered by adrenergic stimuli and are more often lethal. Effective pharmacological treatment is challenged by interindividual differences, mutation dependence, and adverse effects, translating into an increased use of invasive measures (implantable cardioverter-defibrillator, sympathetic denervation) in patients with LQTS type 3. Previous studies have demonstrated the therapeutic potential of polyclonal KCNQ1 antibody for LQTS type 2. Here, we sought to identify a monoclonal KCNQ1 antibody that preserves the electrophysiological properties of the polyclonal form. Using hybridoma technology, murine monoclonal antibodies were generated, and patch clamp studies were performed for functional characterization. We identified a monoclonal KCNQ1 antibody able to normalize cardiac action potential duration and to suppress arrhythmias in a pharmacological model of LQTS type 3 using human-induced pluripotent stem cell-derived cardiomyocytes.NEW & NOTEWORTHY Long QT syndrome is a leading cause of sudden cardiac death in the young. Recent research has highlighted KCNQ1 antibody therapy as a new treatment modality for long QT syndrome type 2. Here, we developed a monoclonal KCNQ1 antibody that similarly restores cardiac repolarization. Moreover, the identified monoclonal KCNQ1 antibody suppresses arrhythmias in a cellular model of long QT syndrome type 3, holding promise as a first-in-class antiarrhythmic immunotherapy.


Assuntos
Canal de Potássio KCNQ1 , Síndrome do QT Longo , Humanos , Camundongos , Animais , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/terapia , Síndrome do QT Longo/tratamento farmacológico , Arritmias Cardíacas , Miócitos Cardíacos , Imunoterapia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
4.
Mar Drugs ; 22(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535452

RESUMO

Sea anemone venom, abundant in protein and peptide toxins, serves primarily for predatory defense and competition. This study delves into the insulin-like peptides (ILPs) present in sea anemones, particularly focusing on their role in potentially inducing hypoglycemic shock in prey. We identified five distinct ILPs in Exaiptasia diaphana, exhibiting varied sequences. Among these, ILP-Ap04 was successfully synthesized using solid phase peptide synthesis (SPPS) to evaluate its hypoglycemic activity. When tested in zebrafish, ILP-Ap04 significantly reduced blood glucose levels in a model of diabetes induced by streptozotocin (STZ) and glucose, concurrently affecting the normal locomotor behavior of zebrafish larvae. Furthermore, molecular docking studies revealed ILP-Ap04's unique interaction with the human insulin receptor, characterized by a detailed hydrogen-bonding network, which supports a unique mechanism for its hypoglycemic effects. Our findings suggest that sea anemones have evolved sophisticated strategies to activate insulin receptors in vertebrates, providing innovative insights into the design of novel drugs for the treatment of diabetes.


Assuntos
Venenos de Cnidários , Diabetes Mellitus , Anêmonas-do-Mar , Humanos , Animais , Insulina , Hipoglicemiantes , Peixe-Zebra , Simulação de Acoplamento Molecular , Peptídeos Semelhantes à Insulina
5.
Mar Drugs ; 22(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38393042

RESUMO

The venoms of various sea anemones are rich in diverse toxins, which usually play a dual role in capturing prey and deterring predators. However, the complex components of such venoms have not been well known yet. Here, venomics of integrating transcriptomic and proteomic technologies was applied for the first time to identify putative protein and peptide toxins from different tissues of the representative sea anemone, Heteractis magnifica. The transcriptomic analysis of H. magnifica identified 728 putative toxin sequences, including 442 and 381 from the tentacles and the column, respectively, and they were assigned to 68 gene superfamilies. The proteomic analysis confirmed 101 protein and peptide toxins in the venom, including 91 in the tentacles and 39 in the column. The integrated venomics also confirmed that some toxins such as the ShK-like peptides and defensins are co-expressed in both the tentacles and the column. Meanwhile, a homology analysis was conducted to predict the three-dimensional structures and potential activity of seven representative toxins. Altogether, this venomics study revealed the venom complexity of H. magnifica, which will help deepen our understanding of cnidarian toxins, thereby supporting the in-depth development of valuable marine drugs.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Toxinas Biológicas , Animais , Peçonhas/metabolismo , Anêmonas-do-Mar/metabolismo , Proteômica/métodos , Peptídeos/genética , Peptídeos/metabolismo , Venenos de Cnidários/química
6.
Mar Drugs ; 22(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535477

RESUMO

Recent studies have elucidated the diversity of genes encoding venom in Sea anemones. However, most of those genes are yet to be explored in an evolutionary context. Insulin is a common peptide across metazoans and has been coopted into a predatory venom in many venomous lineages. In this study, we focus on the diversity of insulin-derived venoms in Sea anemones and on elucidating their evolutionary history. We sourced data for 34 species of Sea anemones and found sequences belonging to two venom families which have Insulin PFAM annotations. Our findings show that both families have undergone duplication events. Members of each of the independently evolving clades have consistent predicted protein structures and distinct dN/dS values. Our work also shows that sequences allied with VP302 are part of a multidomain venom contig and have experienced a secondary gain into the venom system of cuticulate Sea anemones.


Assuntos
Insulina , Anêmonas-do-Mar , Humanos , Animais , Comportamento Predatório
7.
BMC Biol ; 21(1): 121, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226201

RESUMO

BACKGROUND: The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS: We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS: Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Genômica , Inversão Cromossômica , Cisteína , Dissulfetos
8.
J Fish Biol ; 105(2): 603-618, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38747400

RESUMO

Fish species of the genus Amphiprion (Perciformes: Pomacentridae) seek protection from predators among the tentacles of sea anemones as their natural habitat, where they live essentially unharmed from stinging by the host's nematocysts. The skin mucus of these anemonefish has been suggested as a protective mechanism that prevents the discharge of the nematocysts upon contact. Whereas some anemonefish species seem to produce their own protective mucous coating, others may acquire mucus (or biomolecules within) from the sea anemone during an acclimation period. In controlled experiments, we show that Amphiprion ocellaris acclimated successfully to their natural host anemone species Stichodactyla gigantea, and also to Stichodactyla haddoni, and in some cases Heteractis crispa, neither of which are natural host species. No symbiosis was observed for three other anemone species tested, Entacmaea quadricolor, Macrodactyla doreensis, and Heteractis malu. We explored the skin mucous protein profile from naive and experienced A. ocellaris during their acclimation to natural and unnatural host anemones. We confidently report the presence of metabolic and structural proteins in the skin mucus of all samples, likely involved in immunological defense, molecular transport, stress response, and signal transduction. For those anemonefish that established symbiosis, there was a clear increase in ribosomal-type proteins. We additionally provide evidence for the presence of anemone proteins only in the skin mucus of individuals that established symbiosis. Our results support previous speculation of the role of skin mucous-associated proteins in anemonefish-anemone symbiosis. Further exploration of these mucosal proteins could reveal the mechanism of anemonefish acclimation to host anemones.


Assuntos
Muco , Perciformes , Anêmonas-do-Mar , Simbiose , Animais , Anêmonas-do-Mar/fisiologia , Perciformes/fisiologia , Muco/química , Muco/fisiologia , Pele/metabolismo , Aclimatação , Proteínas de Peixes/metabolismo
9.
Appl Environ Microbiol ; 89(6): e0018723, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37191521

RESUMO

Understanding disease transmission in corals can be complicated given the intricacy of the holobiont and difficulties associated with ex situ coral cultivation. As a result, most of the established transmission pathways for coral disease are associated with perturbance (i.e., damage) rather than evasion of immune defenses. Here, we investigate ingestion as a potential pathway for the transmission of coral pathogens that evades the mucus membrane. Using sea anemones (Exaiptasia pallida) and brine shrimp (Artemia sp.) to model coral feeding, we tracked the acquisition of the putative pathogens, Vibrio alginolyticus, V. harveyi, and V. mediterranei using GFP-tagged strains. Vibrio sp. were provided to anemones using 3 experimental exposures (i) direct water exposure alone, (ii) water exposure in the presence of a food source (non-spiked Artemia), and (iii) through a "spiked" food source (Vibrio-colonized Artemia) created by exposing Artemia cultures to GFP-Vibrio via the ambient water overnight. Following a 3 h feeding/exposure duration, the level of acquired GFP-Vibrio was quantified from anemone tissue homogenate. Ingestion of spiked Artemia resulted in a significantly greater burden of GFP-Vibrio equating to an 830-fold, 3,108-fold, and 435-fold increase in CFU mL-1 when compared to water exposed trials and a 207-fold, 62-fold, and 27-fold increase in CFU mL-1 compared to water exposed with food trials for V. alginolyticus, V. harveyi, and V. mediterranei, respectively. These data suggest that ingestion can facilitate delivery of an elevated dose of pathogenic bacteria in cnidarians and may describe an important portal of entry for pathogens in the absence of perturbing conditions. IMPORTANCE The front line of pathogen defense in corals is the mucus membrane. This membrane coats the surface body wall creating a semi-impermeable layer that inhibits pathogen entry from the ambient water both physically and biologically through mutualistic antagonism from resident mucus microbes. To date, much of the coral disease transmission research has been focused on mechanisms associated with perturbance of this membrane such as direct contact, vector lesions (predation/biting), and waterborne exposure through preexisting lesions. The present research describes a potential transmission pathway that evades the defenses provided by this membrane allowing unencumbered entry of bacteria as in association with food. This pathway may explain an important portal of entry for emergence of idiopathic infections in otherwise healthy corals and can be used to improve management practices for coral conservation.


Assuntos
Antozoários , Anêmonas-do-Mar , Vibrio , Animais , Antozoários/microbiologia , Anêmonas-do-Mar/microbiologia , Processos Heterotróficos , Ingestão de Alimentos
10.
Mol Biol Rep ; 50(3): 2095-2105, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36542234

RESUMO

BACKGROUND: Anemone shikokiana (Makino) Makino, disjunctly distributed in Shandong Peninsula of China and Shikoku Island of Japan, is a rare and endangered species. To provide genetic information and understand its phylogeny, we conducted research on the chloroplast (cp) genome of A. shikokiana. METHODS AND RESULTS: The complete cp genome sequence of A. shikokiana was constructed in this study. The results showed that the cp genome of A. shikokiana has a typical quadripartite cyclic with a total length of 159,286 bp. In total, 111 unique genes were identified, including 78 protein-coding genes, 29 tRNA-coding genes and 4 rRNA-coding genes. A total of 37 long repeat sequences and 67 microsatellites were found in this cp genome. The cp genome of A. shikokiana was compared with eleven other Anemone cp genomes available from the Genbank database. We found some variations among the different genomes, especially in the LSC and SSC regions, and identified some regions as potential molecular markers such as ycf1, ndhE, ndhD, ndhF-trnL, ndhA and ndhF. The results of phylogenetic analysis suggested that A. narcissiflora was the closest relative of A. shikokiana. CONCLUSIONS: The results filled the gap of cp genome sequence information of A. shikokiana, laying the foundation to explore the evolutionary relationships of A. shikokiana in future studies. It provided a valuable genetic resource for the molecular identification and phylogenetic study of Anemone.


Assuntos
Anemone , Cloroplastos , Genoma de Cloroplastos , Filogenia , Cloroplastos/genética , Anemone/classificação , Anemone/citologia , Anemone/genética , Genoma de Cloroplastos/genética , Japão , China , Espécies em Perigo de Extinção , Conservação dos Recursos Naturais , Códon/genética , Mutagênese , Sequências Repetitivas de Ácido Nucleico
11.
Mar Drugs ; 21(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36976246

RESUMO

Sea anemones are sessile invertebrates of the phylum Cnidaria and their survival and evolutive success are highly related to the ability to produce and quickly inoculate venom, with the presence of potent toxins. In this study, a multi-omics approach was applied to characterize the protein composition of the tentacles and mucus of Bunodosoma caissarum, a species of sea anemone from the Brazilian coast. The tentacles transcriptome resulted in 23,444 annotated genes, of which 1% showed similarity with toxins or proteins related to toxin activity. In the proteome analysis, 430 polypeptides were consistently identified: 316 of them were more abundant in the tentacles while 114 were enriched in the mucus. Tentacle proteins were mostly enzymes, followed by DNA- and RNA-associated proteins, while in the mucus most proteins were toxins. In addition, peptidomics allowed the identification of large and small fragments of mature toxins, neuropeptides, and intracellular peptides. In conclusion, integrated omics identified previously unknown or uncharacterized genes in addition to 23 toxin-like proteins of therapeutic potential, improving the understanding of tentacle and mucus composition of sea anemones.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/metabolismo , Venenos de Cnidários/química , Brasil , Multiômica , Peptídeos/química , Toxinas Marinhas/química
12.
Mar Drugs ; 22(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38248637

RESUMO

The bioprospecting of sea anemone tissues and secretions has revealed that they are natural libraries of polypeptides with diverse biological activities that can be utilized to develop of biotechnological tools with potential medical and industrial applications. This study conducted a proteomic analysis of crude venom extracts from Anthopleura dowii Verrill, 1869, and Lebrunia neglecta Duchassaing & Michelotti, 1860. The obtained data allowed us to identify 201 polypeptides, of which 39% were present in both extracts. Among the obtained sequences, hydrolase-type enzymes, oxidoreductases, transferases, heat shock proteins, adhesion proteins, and protease inhibitors, among others, were identified. Interaction analysis and functional annotation indicated that these proteins are primarily involved in endoplasmic reticulum metabolic processes such as carbon metabolism and protein processing. In addition, several proteins related to oxidative stress were identified, including superoxide dismutase, peroxiredoxins, thioredoxin, and glutathione oxidase. Our results provide novel information on the polypeptide composition of the crude venom extract from sea anemones, which can be utilized to develop molecules for therapeutic tools and industrial applications.


Assuntos
Proteínas de Choque Térmico , Anêmonas-do-Mar , Animais , Neglecta , Bioprospecção , Proteômica , Peptídeos
13.
Mar Drugs ; 21(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38132938

RESUMO

Progressive articular surface degradation during arthritis causes ongoing pain and hyperalgesia that lead to the development of functional disability. TRPA1 channel significantly contributes to the activation of sensory neurons that initiate neurogenic inflammation and mediates pain signal transduction to the central nervous system. Peptide Ms 9a-1 from the sea anemone Metridium senile is a positive allosteric modulator of TRPA1 and shows significant anti-inflammatory and analgesic activity in different models of pain. We used a model of monosodium iodoacetate (MIA)-induced osteoarthritis to evaluate the anti-inflammatory properties of Ms 9a-1 in comparison with APHC3 (a polypeptide modulator of TRPV1 channel) and non-steroidal anti-inflammatory drugs (NSAIDs) such as meloxicam and ibuprofen. Administration of Ms 9a-1 (0.1 mg/kg, subcutaneously) significantly reversed joint swelling, disability, thermal and mechanical hypersensitivity, and grip strength impairment. The effect of Ms 9a-1 was equal to or better than that of reference drugs. Post-treatment histological analysis revealed that long-term administration of Ms9a-1 could reduce inflammatory changes in joints and prevent the progression of cartilage and bone destruction at the same level as meloxicam. Peptide Ms 9a-1 showed significant analgesic and anti-inflammatory effects in the model of MIA-induced OA, and therefore positive allosteric modulators could be considered for the alleviation of OA symptoms.


Assuntos
Osteoartrite , Anêmonas-do-Mar , Animais , Meloxicam/efeitos adversos , Modelos Animais de Doenças , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Dor , Anti-Inflamatórios/efeitos adversos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Peptídeos/uso terapêutico , Ácido Iodoacético/toxicidade
14.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108565

RESUMO

Neuroblastoma can be accessed with compounds of larger sizes and wider polarities, which do not usually cross the blood-brain barrier. Clinical data indicate cases of spontaneous regression of neuroblastoma, suggesting a reversible point in the course of cell brain tumorigenesis. Dual specificity tyrosine-phosphorylation-regulated kinase2 (DYRK2) is a major molecular target in tumorigenesis, while curcumin was revealed to be a strong inhibitor of DYRK2 (PBD ID: 5ZTN). Methods: in silico studies by CLC Drug Discovery Workbench (CLC) and Molegro Virtual Docker (MVD) Software on 20 vegetal compounds from the human diet tested on 5ZTN against the native ligand curcumin, in comparison with anemonin. In vitro studies were conducted on two ethanolic extracts from Anemone nemorosa tested on normal and tumor human brain cell lines NHA and U87, compared with four phenolic acids (caffeic, ferulic, gentisic, and para-aminobenzoic/PABA). Conclusions: in silico studies revealed five dietary compounds (verbascoside, lariciresinol, pinoresinol, medioresinol, matairesinol) acting as stronger inhibitors of 5ZTN compared to the native ligand curcumin. In vitro studies indicated that caffeic acid has certain anti-proliferative effects on U87 and small benefits on NHA viability. A. nemorosa extracts indicated potential benefits on NHA viability, and likely dangerous effects on U87.


Assuntos
Curcumina , Neuroblastoma , Humanos , Curcumina/farmacologia , Ligantes , Linhagem Celular Tumoral , Dieta , Encéfalo , Carcinogênese
15.
BMC Genomics ; 23(1): 846, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36544087

RESUMO

BACKGROUND: The ray and disc florets on the chrysanthemum capitulum are morphologically diverse and have remarkably abundant variant types, resulting in a rich variety of flower types. An anemone shape with pigmented and elongated disk florets is an important trait in flower shape breeding of chrysanthemums. The regulatory mechanism of their anemone-type disc floret formation was not clear, thus limiting the directional breeding of chrysanthemum flower types. In this study, we used morphological observation, transcriptomic analysis, and gene expression to investigate the morphogenetic processes and regulatory mechanisms of anemone-type chrysanthemum. RESULT: Scanning electron microscopy (SEM) observation showed that morphological differences between non-anemone-type disc florets and anemone-type disc florets occurred mainly during the petal elongation period. The anemone-type disc florets elongated rapidly in the later stages of development. Longitudinal paraffin section analysis revealed that the anemone-type disc florets were formed by a great number of cells in the middle layer of the petals with vigorous division. We investigated the differentially expressed genes (DEGs) using ray and disc florets of two chrysanthemum cultivars, 082 and 068, for RNA-Seq and their expression patterns of non-anemone-type and anemone-type disc florets. The result suggested that the CYCLOIDEA2 (CYC2s), MADS-box genes, and phytohormone signal-related genes appeared significantly different in both types of disc florets and might have important effects on the formation of anemone-type disc florets. In addition, it is noteworthy that the auxin and jasmonate signaling pathways might play a vital role in developing anemone-type disc florets. CONCLUSIONS: Based on our findings, we propose a regulatory network for forming non-anemone-type and anemone-type disc florets. The results of this study lead the way to further clarify the mechanism of the anemone-type chrysanthemum formation and lay the foundation for the directive breeding of chrysanthemum petal types.


Assuntos
Chrysanthemum , Transcriptoma , Melhoramento Vegetal , Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
16.
Mar Drugs ; 20(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35877758

RESUMO

The TRPA1 channel is involved in a variety of physiological processes and its activation leads to pain perception and the development of inflammation. Peptide Ms 9a-1 from sea anemone Metridium senile is a positive modulator of TRPA1 and causes significant analgesic and anti-inflammatory effects by desensitization of TRPA1-expressing sensory neurons. For structural and functional analysis of Ms 9a-1, we produced four peptides-Ms 9a-1 without C-terminal domain (abbreviated as N-Ms), short C-terminal domain Ms 9a-1 alone (C-Ms), and two homologous peptides (Ms 9a-2 and Ms 9a-3). All tested peptides possessed a reduced potentiating effect on TRPA1 compared to Ms 9a-1 in vitro. None of the peptides reproduced analgesic and anti-inflammatory properties of Ms 9a-1 in vivo. Peptides N-Ms and C-Ms were able to reduce pain induced by AITC (selective TRPA1 agonist) but did not decrease AITC-induced paw edema development. Fragments of Ms 9a-1 did not effectively reverse CFA-induced thermal hyperalgesia and paw edema. Ms 9a-2 and Ms 9a-3 possessed significant effects and anti-inflammatory properties in some doses, but their unexpected efficacy and bell-shape dose-responses support the hypothesis of other targets involved in their effects in vivo. Therefore, activity comparison of Ms 9a-1 fragments and homologues peptides revealed structural determinants important for TRPA1 modulation, as well as analgesic and anti-inflammatory properties of Ms9a-1.


Assuntos
Analgésicos , Anêmonas-do-Mar , Analgésicos/química , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Proteínas do Olho , Fragmentos de Peptídeos , Peptídeos/química , Canal de Cátion TRPA1
17.
Mar Drugs ; 20(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35200669

RESUMO

(1) Background: G protein-coupled inward-rectifier potassium (GIRK) channels, especially neuronal GIRK1/2 channels, have been the focus of intense research interest for developing drugs against brain diseases. In this context, venom peptides that selectively activate GIRK channels can be seen as a new source for drug development. Here, we report on the identification and electrophysiological characterization of a novel activator of GIRK1/2 channels, AsKC11, found in the venom of the sea anemone Anemonia sulcata. (2) Methods: AsKC11 was purified from the sea anemone venom by reverse-phase chromatography and the sequence was identified by mass spectrometry. Using the two-electrode voltage-clamp technique, the activity of AsKC11 on GIRK1/2 channels was studied and its selectivity for other potassium channels was investigated. (3) Results: AsKC11, a Kunitz peptide found in the venom of A. sulcata, is the first peptide shown to directly activate neuronal GIRK1/2 channels independent from Gi/o protein activity, without affecting the inward-rectifier potassium channel (IRK1) and with only a minor effect on KV1.6 channels. Thus, AsKC11 is a novel activator of GIRK channels resulting in larger K+ currents because of an increased chord conductance. (4) Conclusions: These discoveries provide new insights into a novel class of GIRK activators.


Assuntos
Venenos de Cnidários/química , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Cromatografia de Fase Reversa , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Espectrometria de Massas , Técnicas de Patch-Clamp , Peptídeos/química , Peptídeos/isolamento & purificação , Xenopus laevis
18.
Mar Drugs ; 20(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200676

RESUMO

Sea anemones are a rich source of biologically active compounds. Among approximately 1100 species described so far, Heteractis crispa species, also known as sebae anemone, is native to the Indo-Pacific area. As part of its venom components, the Hcr 1b-2 peptide was first described as an ASIC1a and ASIC3 inhibitor. Using Xenopus laevis oocytes and the two-electrode voltage-clamp technique, in the present work we describe the remarkable lack of selectivity of this toxin. Besides the acid-sensing ion channels previously described, we identified 26 new targets of this peptide, comprising 14 voltage-gated potassium channels, 9 voltage-gated sodium channels, and 3 voltage-gated calcium channels. Among them, Hcr 1b-2 is the first sea anemone peptide described to interact with isoforms from the Kv7 family and T-type Cav channels. Taken together, the diversity of Hcr 1b-2 targets turns this toxin into an interesting tool to study different types of ion channels, as well as a prototype to develop new and more specific ion channel ligands.


Assuntos
Venenos de Cnidários/química , Toxinas Marinhas/farmacologia , Peptídeos/farmacologia , Animais , Canais de Cálcio/efeitos dos fármacos , Feminino , Toxinas Marinhas/isolamento & purificação , Peptídeos/isolamento & purificação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Anêmonas-do-Mar/metabolismo , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Xenopus laevis
19.
Biochem Genet ; 60(2): 504-526, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34286408

RESUMO

Different toxins acting on Kv1.3 channel have been isolated from animal venom. MeuKTX toxin from Mesobuthus eupeus phillipsi scorpion and shtx-k toxin from Stichodactyla haddoni sea anemone have been identified as two effective Kv1.3 channel blockers. In this work, we characterized the genomic organization of both toxins. MeuKTX gene contains one intron and two exons, similar to the most scorpion toxins. There are a few reports of genomic structure of sea anemone toxins acting on Kv channels. The sequence encoding mature peptide of shtx-k was located in an exon separated by an intron from the coding exon of the propeptide and signal region. In order to make a peptide with more affinity for Kv1.3 channel and greater stability, the shtx-k/ MeuKTX chimeric peptide was designed and constructed using splicing by overlap extension-PCR (SOE-PCR) method. MeuKTX, shtx-k, and shtx-k/MeuKTX were cloned and the expression of the soluble proteins in E. coli was determined. Molecular docking studies indicated more inhibitory effect of shtx-k/MeuKTX on Kv1.3 channel compared to shtx-k and MeuKTX toxins. Key amino acids binding channel from both toxins, also involved in interaction of chimeric peptide with channel. Our results showed that the fusion peptide, shtx-k/MeuKTX could be an effective agent to target Kv1.3 channel.


Assuntos
Venenos de Escorpião , Anêmonas-do-Mar , Sequência de Aminoácidos , Animais , Escherichia coli , Genômica , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/química , Venenos de Escorpião/genética , Escorpiões/química , Escorpiões/genética , Escorpiões/metabolismo , Anêmonas-do-Mar/química , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo
20.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328546

RESUMO

Anemone coronaria L. (2n = 2x = 16) is a perennial, allogamous, highly heterozygous plant marketed as a cut flower or in gardens. Due to its large genome size, limited efforts have been made in order to develop species-specific molecular markers. We obtained the first draft genome of the species by Illumina sequencing an androgenetic haploid plant of the commercial line "MISTRAL® Magenta". The genome assembly was obtained by applying the MEGAHIT pipeline and consisted of 2 × 106 scaffolds. The SciRoKo SSR (Simple Sequence Repeats)-search module identified 401.822 perfect and 188.987 imperfect microsatellites motifs. Following, we developed a user-friendly "Anemone coronaria Microsatellite DataBase" (AnCorDB), which incorporates the Primer3 script, making it possible to design couples of primers for downstream application of the identified SSR markers. Eight genotypes belonging to eight cultivars were used to validate 62 SSRs and a subset of markers was applied for fingerprinting each cultivar, as well as to assess their intra-cultivar variability. The newly developed microsatellite markers will find application in Breeding Rights disputes, developing genetic maps, marker assisted breeding (MAS) strategies, as well as phylogenetic studies.


Assuntos
Anemone , Genoma de Planta , Repetições de Microssatélites/genética , Filogenia , Melhoramento Vegetal , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa