Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 24(19): 4967-4972, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29380899

RESUMO

Compared with the well-known anion-templated effects in shaping silver thiolate clusters, the influence from the organic ligands in the outer shell is still poorly understood. Herein, three new benzoate-functionalized high-nuclearity silver(I) thiolate clusters are isolated and characterized for the first time in the presence of diverse anion templates such as S2- , α-[Mo5 O18 ]6- , and MoO42- . Single-crystal X-ray analysis reveals that the nuclearities of the three silver clusters (SD/Ag28, SD/Ag29, SD/Ag30) vary from 32 to 38 to 78 with co-capped tBuS- and benzoate ligands on the surface. SD/Ag28 is a turtle-like cluster comprising a Ag29 shell caging a Ag3 S3 trigon in the center, whereas SD/Ag29 is a prolate Ag38 sphere templated by the α-[Mo5 O18 ]6- anion. Upon changing from benzoate to methoxyl-substituted benzoate, SD/Ag30 is isolated as a very complicated core-shell spherical cluster composed of a Ag57 shell and a vase-like Ag21 S13 core. Four MoO42- anions are arranged in a supertetrahedron and located in the interstice between the core and shell. Introduction of the bulky benzoate changes elaborately the nuclearity and arrangements of silver polygons on the shell of silver clusters, which is exemplified by comparing SD/Ag28 and a known similar silver thiolate cluster. The three new clusters emit luminescence in the near-infrared (NIR) region and show different thermochromic luminescence properties. This work presents a flexible approach to synthetic studies of high-nuclearity silver clusters decorated by different benzoates, and structural modulations are also achieved.

2.
Chemistry ; 24(56): 15096-15103, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30016561

RESUMO

Introducing phenylphosphonic acid (H2 PPA) into the Ag/tBuSH assembly system has produced a family of nanoscale-sized, high-atom number, silver thiolate/PPA nests (SD/Ag45 a, SD/Ag66 a, and SD/Ag73 a) with impressive core-shell features. SD/Ag45 a is a 45-atom ellipsoid comprised of an Ag36 shell trapping an Ag9 S2 three-bladed rotor inside. SD/Ag66 a comprises an inner rod-like Ag20 core and an outer Ag44 shell, giving a 64-atom nest. These Ag64 nests are further extended by Ag(CN)2 linkers to form a one-dimensional chain structure. SD/Ag73 a is a three-shell 73-nucleus silver nest with a central silver atom enclosed in a rhombicuboctahedron of 24 silver atoms, which is itself enclosed in the outermost shell of a rectified version of a 48-Ag octahedral Goldberg 2,0 cage. The solution behaviors and optical absorption properties of the three nests are described in detail. Of note, SD/Ag45 a and SD/Ag73 a emit in the near-infrared region and show different luminescent thermochromic behavior. This work demonstrates that the participation of H2 PPA strongly influences the structures of silver thiolate nests, thus providing a new route to fabricate and modify them in a more rational way.

3.
Chemistry ; 19(44): 14876-85, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24105852

RESUMO

The comprehensive study reported herein provides compelling evidence that anion templates are the main driving force in the formation of two novel nanoscale lanthanide hydroxide clusters, {Gd38(ClO4)6} (1) and {Gd48Cl2(NO3)} (2), characterized by single-crystal X-ray crystallography, infrared spectroscopy, and magnetic measurements. {Gd38(ClO4)6}, encapsulating six ClO4(-) ions, features a cage core composed of twelve vertex-sharing {Gd4} tetrahedrons and one Gd⋅⋅⋅Gd pillar. When Cl(-) and NO3(-) were incorporated in the reaction instead of ClO4(-), {Gd48Cl2(NO3)} is obtained with a barrel shape constituted by twelve vertex-sharing {Gd4} tetrahedrons and six {Gd5} pyramids. What is more, the cage-like {Gd38} can be dynamically converted into the barrel-shaped {Gd48} upon Cl(-) and NO3(-) stimulus. To our knowledge, it is the first time that the linear M-O-M' fashion and the unique µ8-ClO4(-) mode have been crystallized in pure lanthanide complex, and complex 2 represents the largest gadolinium cluster. Both of the complexes display large magnetocaloric effect in units of J kg(-1) K(-1) and mJ cm(-3) K(-1) on account of the weak antiferromagnetic exchange, the high N(Gd)/M(W) ratio (magnetic density), and the relatively compact crystal lattice (mass density).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa