Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Mol Divers ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935305

RESUMO

The urokinase-type plasminogen activator receptor (uPAR) emerges as a key target for anti-metastasis owing to its pivotal role in facilitating the invasive and migratory processes of cancer cells. Recently, we identified the uPAR-targeting anti-metastatic ability of diltiazem (22), a commonly used antihypertensive agent. Fine-tuning the chemical structures of known hits represents a vital branch of drug development. To develop novel anti-metastatic drugs, we performed an interface-driven structural evolution strategy on 22. The uPAR-targeting and anti-cancer abilities of this antihypertensive drug wereidentified by us recently. Based on in silico strategy, including extensive molecular dynamics (MD) simulations, hierarchical binding free energy predictions, and ADMET profilings, we designed, synthesized, and identified three new diltiazem derivatives (221-8, 221-57, and 221-68) as uPAR inhibitors. Indeed, all of these three derivatives exhibited uPAR-depending inhibitory activity against PC-3 cell line invasion at micromolar level. Particularly, derivatives 221-68 and 221-8 showed enhanced uPAR-dependent inhibitory activity against the tumor cell invasion compared to the original compound. Microsecond timesclae MD simulations demonstrated the optimized moiety of 221-68 and 221-8 forming more comprehensive interactions with the uPAR, highlighting the reasonability of our strategy. This work introduces three novel uPAR inhibitors, which not only pave the way for the development of effective anti-metastatic therapeutics, but also emphasize the efficacy and robustness of an in silico-based lead compound optimization strategy in drug design.

2.
J Cell Mol Med ; 27(11): 1603-1607, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183560

RESUMO

This short communication will enlighten the readers about the exosome and the epithelial-mesenchymal transition (EMT) related to several complicated events. It also highlighted the therapeutic potential of exosomes against EMT. Exosome toxicology, exosome heterogeneity, and a single exosome profiling approach are also covered in this article. In the future, exosomes could help us get closer to cancer vaccine and precision oncology.


Assuntos
Exossomos , Neoplasias , Humanos , Transição Epitelial-Mesenquimal , Transdução de Sinais , Medicina de Precisão
3.
Mol Divers ; 27(1): 323-340, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35467269

RESUMO

Cervical cancer is a major cause of gynecological related mortalities in developing countries. Cisplatin, a potent chemotherapeutic agent used for treating advanced cervical cancer exhibits side effects and resistance development. The current study was aimed to investigate the repurposing of l-menthol as a potential therapeutic drug against cervical cancer. L-menthol was predicted to be non-toxic with good pharmacokinetic properties based on SwissADME and pkCSM analysis. Subsequently, 543 and 1664 targets of l-menthol and cervical cancer were identified using STITCH, BATMAN-TCM, PharmMapper and CTD databases. STRING and Cytoscape analysis of the merged protein-protein interaction network revealed 107 core targets of l- menthol against cervical cancer. M-CODE identified highly connected clusters between the core targets which through KEGG analysis were found to be enriched in pathways related to apoptosis and adherence junctions. Molecular docking showed that l- menthol targeted E6, E6AP and E7 onco-proteins of HPV that interact and inactivate TP53 and Rb1 in cervical cancer, respectively. Molecular docking also showed good binding affinity of l-menthol toward proteins associated with apoptosis and migration. Molecular dynamics simulation confirmed stability of the docked complexes. In vitro analysis confirmed that l-menthol was cytotoxic towards cervical cancer CaSki cells and altered expression of TP53, Rb1, CDKN1A, E2F1, NFKB1, Akt-1, caspase-3, CDH1 and MMP-2 genes identified through network pharmacology approach. Schematic representation of the work flow depicting the potential of l-menthol to target cervical cancer.


Assuntos
Mentol , Neoplasias do Colo do Útero , Feminino , Humanos , Mentol/farmacologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neoplasias do Colo do Útero/tratamento farmacológico
4.
Molecules ; 28(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687169

RESUMO

The CD13 inhibitor ubenimex is used as an adjuvant drug with chemotherapy for the treatment of cancer due to its function as an immunoenhancer, but it has limitations in its cytotoxic efficacy. The proteasome inhibitor ixazomib is a landmark drug in the treatment of multiple myeloma with a high anti-cancer activity. Herein, we conjugated the pharmacophore of ubenimex and the boric acid of ixazomib to obtain a dual CD13 and proteasome inhibitor 7 (BC-05). BC-05 exhibited potent inhibitory activity on both human CD13 (IC50 = 0.13 µM) and the 20S proteasome (IC50 = 1.39 µM). Although BC-05 displayed lower anti-proliferative activity than that of ixazomib in vitro, an advantage was established in the in vivo anti-cancer efficacy and prolongation of survival time, which may be due to its anti-metastatic and immune-stimulating activity. A pharmacokinetic study revealed that BC-05 is a potentially orally active agent with an F% value of 24.9%. Moreover, BC-05 showed more favorable safety profiles than those of ixazomib in preliminary toxicity studies. Overall, the results indicate that BC-05 is a promising drug candidate for the treatment of multiple myeloma.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Inibidores de Proteassoma/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Terapia Enzimática , Antivirais
5.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005250

RESUMO

Flavopiridol is a flavone synthesized from the natural product rohitukine, which is derived from an Indian medicinal plant, namely Dysoxylum binectariferum Hiern. A deeper understanding of the biological mechanisms by which such molecules act may allow scientists to develop effective therapeutic strategies against a variety of life-threatening diseases, such as cancer, viruses, fungal infections, parasites, and neurodegenerative diseases. Mechanistic insight of flavopiridol reveals its potential for kinase inhibitory activity of CDKs (cyclin-dependent kinases) and other kinases, leading to the inhibition of various processes, including cell cycle progression, apoptosis, tumor proliferation, angiogenesis, tumor metastasis, and the inflammation process. The synthetic derivatives of flavopiridol have overcome a few demerits of its parent compound. Moreover, these derivatives have much improved CDK-inhibitory activity and therapeutic abilities for treating severe human diseases. It appears that flavopiridol has potential as a candidate for the formulation of an integrated strategy to combat and alleviate human diseases. This review article aims to unravel the potential therapeutic effectiveness of flavopiridol and its possible mechanism of action.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Quinases Ciclina-Dependentes , Fosforilação , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose
6.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903316

RESUMO

Ovarian cancer represents a major health concern for the female population: there is no obvious cause, it is frequently misdiagnosed, and it is characterized by a poor prognosis. Additionally, patients are inclined to recurrences because of metastasis and poor treatment tolerance. Combining innovative therapeutic techniques with established approaches can aid in improving treatment outcomes. Because of their multi-target actions, long application history, and widespread availability, natural compounds have particular advantages in this connection. Thus, effective therapeutic alternatives with improved patient tolerance hopefully can be identified within the world of natural and nature-derived products. Moreover, natural compounds are generally perceived to have more limited adverse effects on healthy cells or tissues, suggesting their potential role as valid treatment alternatives. In general, the anticancer mechanisms of such molecules are connected to the reduction of cell proliferation and metastasis, autophagy stimulation and improved response to chemotherapeutics. This review aims at discussing the mechanistic insights and possible targets of natural compounds against ovarian cancer, from the perspective of medicinal chemists. In addition, an overview of the pharmacology of natural products studied to date for their potential application towards ovarian cancer models is presented. The chemical aspects as well as available bioactivity data are discussed and commented on, with particular attention to the underlying molecular mechanism(s).


Assuntos
Produtos Biológicos , Neoplasias Ovarianas , Feminino , Humanos , Produtos Biológicos/química , Proliferação de Células , Neoplasias Ovarianas/tratamento farmacológico
7.
Semin Cancer Biol ; 73: 196-218, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33130037

RESUMO

In the last few decades, targeting cancer by the use of dietary phytochemicals has gained enormous attention. The plausible reason and believe or mind set behind this fact is attributed to either lesser or no side effects of natural compounds as compared to the modern chemotherapeutics, or due to their conventional use as dietary components by mankind for thousands of years. Silibinin is a naturally derived polyphenol (a flavonolignans), possess following biochemical features; molecular formula C25H22O10, Molar mass: 482.44 g/mol, Boiling point 793 °C, with strikingly high antioxidant and anti-tumorigenic properties. The anti-cancer properties of Silibinin are determined by a variety of cellular pathways which include induction of apoptosis, cell cycle arrest, inhibition of angiogenesis and metastasis. In addition, Silibinin controls modulation of the expression of aberrant miRNAs, inflammatory response, and synergism with existing anti-cancer drugs. Therefore, modulation of a vast array of cellular responses and homeostatic aspects makes Silibinin an attractive chemotherapeutic agent. However, like other polyphenols, the major hurdle to declare Silibinin a translational chemotherapeutic agent, is its lesser bioavailability. After summarizing the chemistry and metabolic aspects of Silibinin, this extensive review focuses on functional aspects governed by Silibinin in chemoprevention with an ultimate goal of summarizing the evidence supporting the chemopreventive potential of Silibinin and clinical trials that are currently ongoing, at a single platform.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias/tratamento farmacológico , Silibina/farmacologia , Animais , Humanos , Polifenóis/farmacologia
8.
Bioorg Med Chem ; 66: 116809, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35569251

RESUMO

To search for novel focal adhesion kinase (FAK) inhibitors for intervention of metastatic triple-negative breast cancer (TNBC), a series of hybrids 7a-s from chloropyramine and cinnamic acid analogs were designed, synthesized and biologically evaluated. The most active compound 7d could potently inhibit the proliferation, invasion and migration of TNBC cells in vitro. The docking analysis of 7d was performed to elucidate its possible binding modes to focal adhesion targeting (FAT) domain of FAK scaffold. Further mechanism studies indicated the ability of 7d in disrupting Y925 autophosphorylation of FAK, reducing formation of focal adhesions (FAs) and stress fibers (SFs) as well as inducing apoptosis of TNBC cells. Together, 7d is a novel FAK inhibitor to inhibit the essential nonkinase scaffolding function of FAK via binding FAT domain and may be worth studying further for intervention of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Movimento Celular , Cinamatos , Etilenodiaminas , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Neoplasias de Mama Triplo Negativas/patologia
9.
Mol Biol Rep ; 49(9): 8835-8845, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35780225

RESUMO

BACKGROUND: Thioredoxin reductase 1 (TrxR1) inhibitor, pyrano [3,2-a] phenazine, named CPUL-1, was synthesized with potential anticancer activity. The aim of the present work was to explore the potential anti-proliferative and anti-metastatic ability of CPUL-1 against A549 cancer cell lines in vitro. METHODS AND RESULTS: First, Cell Counting Kit-8 (CCK8) assay was used to assess cell proliferation. The A549 cell migration was evaluated by wound healing assay and transwell assay. Second, the epithelial-mesenchymal transition (EMT)-related proteins in A549 cells treated with CPUL-1 were analyzed by western blot methods. Then, TrxR1 enzyme activity assay and reactive oxygen species (ROS) assay were conducted to evaluate the effect of CPUL-1 on TrxR1 inhibition and ROS levels. Finally, western blotting was used to explore the mechanism of CPUL-1. The study results revealed that the ability of cell proliferation and migration was decreased under CPUL-1 treatment. CPUL-1 could distinctly restrain the migration and invasion of A549 cells through inhibiting EMT process. The results of TrxR1 enzyme activity assay, ROS assay and western blotting showed that CPUL-1 influenced EMT via inducing ROS-mediated ERK/JNK signaling by inhibiting TrxR1 enzyme activity. CONCLUSIONS: Together, proliferation suppression and anti-metastasis activity of CPUL-1 in A549 cells were demonstrated by all the evidence. Our findings highlight the great potential of phenazine compound CPUL-1 to suppress A549 cells proliferation and metastasis.


Assuntos
Neoplasias Pulmonares , Tiorredoxina Redutase 1 , Células A549 , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/metabolismo , Fenazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Redutase 1/metabolismo
10.
Acta Biochim Biophys Sin (Shanghai) ; 54(2): 252-260, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35538024

RESUMO

Focal adhesion kinase (FAK), a multi-functional cytoplasmic tyrosine kinase, plays a critical role in cancer migration, proliferation and metastasis via regulating multiple signaling pathways. SY-707 is an anaplastic lymphoma kinase (ALK)/FAK/type 1 insulin-like growth factor receptor (IGF1R) multi-kinase inhibitor which is now being evaluated in phase II clinical trials for ALK positive non-small cell lung cancer (NSCLC). However, the effect of SY-707 on breast cancer is unknown. In this study, we assessed preclinical the anti-growth and anti-metastasis potency of SY-707 in breast cancer cells. ATP content, PE-Annexin V, and would healing assays were used to examine cell proliferation, cell cycle and migration. Then, SD rat and beagle dog models were used to evaluate the pharmacokinetics profile of SY-707, and mouse xenograft model was used to evaluate the anti-cancer activities of SY-707 . We found that breast cancer cells apoptosis were induced by SY-707. Moreover, SY-707 exerted inhibition on cell migration and adhesion in a dose-dependent manner. In T47D xenograft mice, SY-707 had significant anti-tumor activities alone or synergistically with Paclitaxel. Meanwhile, SY-707 also displayed significant suppression on spontaneous metastasis of tumor to the lung in 4T1 murine breast cancer xenograft model. In conclusion, SY-707 has potent anti-proliferation and anti-migration potential in breast cancer and , implying its therapeutic application for the treatment of breast cancer in future clinical trials.


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cães , Feminino , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Metástase Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1 , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35682990

RESUMO

Cancer is a life-threatening and multifaceted disease. Pioneering research works in the past three decades have mechanistically disentangled intertwined signaling networks which play contributory roles in carcinogenesis and metastasis. Phenomenal strides have been made in leveraging our scientific knowledge altogether to a new level of maturity. Rapidly accumulating wealth of information has underlined a myriad of transduction cascades which can be pharmaceutically exploited for cancer prevention/inhibition. Natural products serve as a treasure trove and compel interdisciplinary researchers to study the cancer chemopreventive roles of wide-ranging natural products in cell culture and preclinical studies. Experimental research related to thymoquinone has gradually gained momentum because of the extra-ordinary cancer chemopreventive multifunctionalities of thymoquinone. In this mini-review, we provide an overview of different cell signaling cascades reported to be regulated by thymoquinone for cancer chemoprevention. Essentially, thymoquinone efficacy has also been notably studied in animal models, which advocates for a rationale-based transition of thymoquinone from the pre-clinical pipeline to clinical trials.


Assuntos
Produtos Biológicos , Neoplasias , Animais , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Produtos Biológicos/uso terapêutico , Carcinogênese , Neoplasias/patologia , Transdução de Sinais
12.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557950

RESUMO

Phloretin is a natural dihydrochalcone found in many fruits and vegetables, especially in apple tree leaves and the Manchurian apricots, exhibiting several therapeutic properties, such as antioxidant, antidiabetic, anti-inflammatory, and antitumor activities. In this review article, the diverse aspects of the anticancer potential of phloretin are addressed, presenting its antiproliferative, proapoptotic, antimetastatic, and antiangiogenic activities in many different preclinical cancer models. The fact that phloretin is a planar lipophilic polyphenol and, thus, a membrane-disrupting Pan-Assay Interference compound (PAIN) compromises the validity of the cell-based anticancer activities. Phloretin significantly reduces membrane dipole potential and, therefore, is expected to be able to activate a number of cellular signaling pathways in a non-specific way. In this way, the effects of this minor flavonoid on Bax and Bcl-2 proteins, caspases and MMPs, cytokines, and inflammatory enzymes are all analyzed in the current review. Moreover, besides the anticancer activities exerted by phloretin alone, its co-effects with conventional anticancer drugs are also under discussion. Therefore, this review presents a thorough overview of the preclinical anticancer potential of phloretin, allowing one to take the next steps in the development of novel drug candidates and move on to clinical trials.


Assuntos
Neoplasias , Floretina , Humanos , Floretina/farmacologia , Floretina/química , Neoplasias/tratamento farmacológico , Citocinas , Flavonoides/uso terapêutico , Caspases
13.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364478

RESUMO

Despite the immense therapeutic advances in the field of health sciences, cancer is still to be found among the global leading causes of morbidity and mortality. Ethnomedicinally, natural bioactive compounds isolated from various plant sources have been used for the treatment of several cancer types and have gained notable attention. Ferulic acid, a natural compound derived from various seeds, nuts, leaves, and fruits, exhibits a variety of pharmacological effects in cancer, including its proapoptotic, cell-cycle-arresting, anti-metastatic, and anti-inflammatory activities. This review study presents a thorough overview of the molecular targets and cellular signaling pathways modulated by ferulic acid in diverse malignancies, showing high potential for this phenolic acid to be developed as a candidate agent for novel anticancer therapeutics. In addition, current investigations to develop promising synergistic formulations are also discussed.


Assuntos
Neoplasias , Fenol , Humanos , Fenol/farmacologia , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/uso terapêutico , Transdução de Sinais , Neoplasias/metabolismo , Carcinogênese
14.
AAPS PharmSciTech ; 23(4): 109, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35411426

RESUMO

The role of neutrophils in tumor metastasis has recently attracted widespread interest. Neutrophils are the most abundant immune cells in human peripheral blood, and large numbers can spontaneously migrate to metastatic sites, where they form an immunosuppressive microenvironment. Polysialic acid (PSA) can target peripheral blood neutrophils (PBNs) mediated by L-selectin, and abemaciclib (ABE) and mitoxantrone (MIT) can treat immunosuppressive microenvironments. Here, we aimed to inhibit lung metastasis of breast cancer and improve chemoimmunotherapy by designing a PSA-modified ABE and MIT co-delivery system (AM-polyion complex (PIC)) to target PBNs in mice with metastatic tumors. We found that through electrostatic interactions between the strong negative charge of PSA and the positive charge of the drug can form stable nanocomplexes and that spontaneous migration of neutrophils can mediate the aggregation of these complexes in the lungs, induce antimetastatic immune responses, enhance the effectiveness of cytotoxic T lymphocytes (CTLs), and inhibit regulatory T cell (Treg) proliferation in vivo and in vitro. Pharmacodynamic results suggested that neutrophil-mediated AM-PIC chemoimmunotherapy inhibited tumor metastasis in mice with lung metastasis of 4T1 breast cancer. Overall, PSA-modified nanocomplexes offer promising neutrophil-mediated, targeted drug delivery systems to treat lung metastasis of breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Neutrófilos , Antígeno Prostático Específico/uso terapêutico , Ácidos Siálicos , Microambiente Tumoral
15.
Glycoconj J ; 38(6): 669-688, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748163

RESUMO

A N-glycan specific lectin from Rhizoctonia bataticola [RBL] was shown to induce growth inhibitory and apoptotic effect in human ovarian, colon and leukemic cells but mitogenic effect on normal PBMCs as reported earlier, revealing its clinical potential. RBL has unique specificity for high mannose tri and tetra antennary N-glycans, expressed in ovarian cancer and also recognizes glycans which are part of CA 125 antigen, a well known ovarian cancer marker. Hence, in the present study diagnostic and therapeutic potential of RBL was investigated using human ovarian epithelial cancer SKOV3 and OVCAR3 cells known for differentially expressing CA 125. RBL binds differentially to human ovarian normal, cyst and cancer tissues. Flow cytometry, western blot analysis of membrane proteins showed the competitive binding of RBL and CA 125 antibody for the same binding sites on SKOV3 and OVCAR3 cells. RBL has strong binding to both SKOV3 and OVCAR3 cells with MFI of 173 and 155 respectively. RBL shows dose and time dependent growth inhibitory effect with IC50 of 2.5 and 8 µg/mL respectively for SKOV3 and OVCAR3 cells. RBL induces reproductive cell death, morphological changes, nuclear degradation and increased release of ROS in SKOV3 and OVCAR3 cells leading to cell death. This is also supported by increase in hypodiploid population, altered MMP leading to apoptosis possibly involving intrinsic pathway. Adhesion, wound healing, invasion and migration assays demonstrated anti-metastasis effect of RBL apart from its growth inhibitory effect. These results show the promising potential of RBL both as a diagnostic and therapeutic agent.


Assuntos
Antígeno Ca-125 , Neoplasias Ovarianas , Apoptose , Ascomicetos , Antígeno Ca-125/farmacologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Lectinas/metabolismo , Lectinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
16.
Bioorg Med Chem ; 37: 116107, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735799

RESUMO

Triple-negative breast cancer (TNBC) is one of the most aggressive cancer with high mortality and recurrence rates. Hecogenin, a steroidal sapogenin, is reported as a potential anti-tumor agent against breast cancer. However, the moderate activity limits its further application in clinical. With the aim to identify novel analogues that are especially efficacious in therapy of TNBC, a series of novel hecogenin thiosemicarbazone and semicarbazone derivatives were designed, synthesized and biologically evaluated. Screening of cytotoxicity revealed that 4c could potently inhibit the proliferation of breast cancer cells (MCF-7 and MDA-MB-231 cells), lung cancer cells (A549) and colon cancer cells (HT-29) at low µM level. Importantly, further mechanism studies indicated the ability of 4c in inducing apoptosis of MDA-MB-231 cells by arresting the cell cycle. Moreover, 4c notably suppressed the migration and invasion of MDA-MB-231 cells compared to its parent hecogenin at the equal concentration.


Assuntos
Antineoplásicos/farmacologia , Sapogeninas/farmacologia , Tiossemicarbazonas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Sapogeninas/síntese química , Sapogeninas/toxicidade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/toxicidade
17.
Cancer Sci ; 111(8): 2837-2849, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32539229

RESUMO

Accumulating evidence on the association of VEGF-C with lymphangiogenesis and lymph node metastasis implicates lymphatic vessels as a potential target in anti-cancer therapy. To evaluate whether blocking VEGF-C and VEGFR-3 signaling can inhibit multi-organ metastases, a mouse metastatic mammary cancer model was subjected to gene therapy using a soluble VEGFR-3 expression vector (psVEGFR-3). We showed that psVEGFR-3 significantly diminished cell growth in vitro with or without added VEGF-C, and significantly reduced primary tumor growth and tumor metastases to wide-spectrum organs in vivo. Although apoptotic cell death and angiogenesis levels did not differ between the control and psVEGFR-3 groups, cell proliferation and lymphangiogenesis in the mammary tumors were significantly decreased in the psVEGFR-3 group. Furthermore, lymphatic vessel invasion was significantly inhibited in this group. Real-time RT-PCR analysis revealed significantly high expression of the Vegfr3 gene due to gene therapy, and the transcriptional levels of Pcna and Lyve1 tended to decrease in the psVEGFR-3 group. Immunofluorescence staining indicated that phospho-tyrosine expression was considerably lower in tumor cells of psVEGFR-3-treated mammary carcinomas than those of control tumors. Double immunofluorescence staining indicated that phospho-tyrosine+ /LYVE-1+ (a lymphatic vessel marker) tended to decrease in psVEGFR-3-treated mammary carcinomas compared with control mice, indicating a decline in the activity of the VEGF-C/VEGFR-3 axis. These findings showed that a blockade of VEGF-C/VEGFR-3 signaling caused by sVEGFR-3 sequestered VEGF-C and prevented the side-effects of anti-angiogenesis and suppressed overall metastases, suggesting their high clinical significance.


Assuntos
Terapia Genética/métodos , Neoplasias Mamárias Experimentais/terapia , Metástase Neoplásica/terapia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular Tumoral/transplante , Feminino , Vasos Linfáticos/patologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica/genética , Fator C de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Cancer Immunol Immunother ; 69(9): 1725-1735, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32328672

RESUMO

Surface exposed phosphatidylserine (PS) of cancer aids it to evade immune surveillance and thereby results in tumor progression. Earlier, we reported that PS targeting cationic liposomes, phosphatidylcholine-stearylamine (PC-SA), alone and in combination with doxorubicin can result in complete remission of B16F10 melanoma in C57BL/6 mice without signs of toxicity. Inducing an immunogenic response is highly crucial for any cancer therapy as it is essential in improving the tumor microenvironment for any drug to act. Herein, we demonstrate that PC-SA, besides having tumor reducing ability, elicits a strong immune response. The combination therapy (PC-SA-DOX) is superior to free DOX in enhancing the anti-tumor immune effect on CD4-positive and CD8-positive T cells for IFN-γ, IL-2 and TNF-α production in sera and splenic culture supernatants of B16F10 tumor-induced mice. An upregulation of IL-12 and NO production is evidenced in spleen cultures of these mice, thereby showing a promising role of both Th1 type and innate immune response for host anti-tumor activity. Complete elimination of cancer is sometimes accomplished by surgery, but its effectiveness is often limited due to the propensity of cancers to spread to distant organs by metastasis. In our present study, we show that in PC-SA-DOX treated mice, the elevated Th1 cytokine levels create an immuno-protective environment which thereby facilitates in curing lung metastasis. Our results, therefore, warrant the need of effective immune stimulation by anticancer formulations for inhibition of solid tumors and metastasis, demonstrated by the liposomal DOX formulation.


Assuntos
Aminas/farmacologia , Citocinas/metabolismo , Doxorrubicina/farmacologia , Lipossomos/farmacologia , Metástase Neoplásica/tratamento farmacológico , Células Th1/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/efeitos dos fármacos , Baço/metabolismo , Células Th1/metabolismo , Microambiente Tumoral/efeitos dos fármacos
19.
Molecules ; 25(16)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824166

RESUMO

Tricin, a flavone isolated from rice bran, has been shown to be chemopreventive in a colorectal cancer (CRC) mouse model. This study aimed to illustrate the inhibitory activities of tricin in colon cancer cells and in a metastatic CRC mouse model. BALB/c mice injected with mouse Colon26-Luc cells into the rectum wall were treated with tricin (37.5 mg/kg) daily for 18 days. Orthotopic colon tumor growth and metastasis to lungs were assessed by in vivo bioluminescence imaging. Results showed that tricin suppressed Colon-Luc cells motility and downregulated phosphorylated Akt, Erk1/2 and NF-κB expressions of human colon cancer HT-29 cells. While tricin treatment suppressed tumor growth and lung metastasis as well as altered the populations of myeloid-derived suppressor cells and regulatory T cells in spleens. In summary, the tumor microenvironment modulatory and anti-metastatic effects of tricin in colon cancer mouse model were shown for the first time, suggesting the potential development of tricin-containing food supplements for CRC patients.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Grão Comestível/química , Flavonas/farmacologia , Flavonoides/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Molecules ; 25(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630349

RESUMO

Much has been written on the physiological benefits of Korean Red Ginseng (KRG). Among its various components, ginsenosides have been widely investigated for their various pharmacological effects. However, polysaccharides are a major KRG component that has not received scrutiny similar to that of ginsenosides. The present study aims to fill that gap in the existing literature and to investigate the possible functions of polysaccharide in KRG. The researchers evaluated proteomic changes in non-saponin fractions with rich polysaccharides (NFP) in KRG. Based on the serum analysis, proteomics analysis of the liver and the spleen was additionally conducted to identify related functions. We validated the suggested functions of NFP with the galactosamine-induced liver injury model and the cyclophosphamide-induced immunosuppression model. Then, we evaluated the antimetastatic potential of NFP in the lungs. Further proteomics analysis of the spleen and liver after ingestion confirmed functions related to immunity, cancer, hepatoprotection, and others. Then, we validated the suggested corresponding functions of the NFP in vivo model. NFP showed immune-enhancing effects, inhibited melanoma cell metastasis in the lung, and decreased liver damage. The results show that using the proteomic approach uncovers the potential effects of polysaccharides in KRG, which include enhancing the immune system and protecting the liver.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ginsenosídeos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Panax/química , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Galactosamina/toxicidade , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fitoterapia , Substâncias Protetoras/farmacologia , Proteoma , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa