Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530327

RESUMO

While selective inhibition is one of the key assets for a small molecule drug, many diseases can only be tackled by simultaneous inhibition of several proteins. An example where achieving selectivity is especially challenging are ligands targeting human kinases. This difficulty arises from the high structural conservation of the kinase ATP binding sites, the area targeted by most inhibitors. We investigated the possibility to identify novel small molecule ligands with pre-defined binding profiles for a series of kinase targets and anti-targets by in silico docking. The candidate ligands originating from these calculations were assayed to determine their experimental binding profiles. Compared to previous studies, the acquired hit rates were low in this specific setup, which aimed at not only selecting multi-target kinase ligands, but also designing out binding to anti-targets. Specifically, only a single profiled substance could be verified as a sub-micromolar, dual-specific EGFR/ErbB2 ligand that indeed avoided its selected anti-target BRAF. We subsequently re-analyzed our target choice and in silico strategy based on these findings, with a particular emphasis on the hit rates that can be expected from a given target combination. To that end, we supplemented the structure-based docking calculations with bioinformatic considerations of binding pocket sequence and structure similarity as well as ligand-centric comparisons of kinases. Taken together, our results provide a multi-faceted picture of how pocket space can determine the success of docking in multi-target drug discovery efforts.


Assuntos
Simulação de Acoplamento Molecular/métodos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Simulação por Computador , Descoberta de Drogas , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Relação Estrutura-Atividade
2.
Molecules ; 24(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986947

RESUMO

Due to the lack of approved vaccines against human leishmaniasis and the limitations of the current chemotherapy inducing side effects and drug resistance, development of new, effective chemotherapeutic agents is essential. This study describes the synthesis of a series of novel oxadiazoles and indolizine-containing compounds. The compounds were screened in silico using an EIIP/AQVN filter followed by ligand-based virtual screening and molecular docking to parasite arginase. Top hits were further screened versus human arginase and finally against an anti-target battery to tag their possible interactions with proteins essential for the metabolism and clearance of many substances. Eight candidate compounds were selected for further experimental testing. The results show measurable in vitro anti-leishmanial activity for three compounds. One compound with an IC50 value of 2.18 µM on Leishmania donovani intramacrophage amastigotes is clearly better positioned than the others as an interesting molecular template for further development of new anti-leishmanial agents.


Assuntos
Antiprotozoários/farmacologia , Indolizinas/farmacologia , Leishmania donovani/efeitos dos fármacos , Oxidiazóis/farmacologia , Animais , Antiprotozoários/química , Arginase/metabolismo , Indolizinas/química , Leishmania donovani/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxidiazóis/química , Células RAW 264.7
3.
Molecules ; 21(5)2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27164067

RESUMO

Arginase, a drug target for the treatment of leishmaniasis, is involved in the biosynthesis of polyamines. Flavonoids are interesting natural compounds found in many foods and some of them may inhibit this enzyme. The MetIDB database containing 5667 compounds was screened using an EIIP/AQVN filter and 3D QSAR to find the most promising candidate compounds. In addition, these top hits were screened in silico versus human arginase and an anti-target battery consisting of cytochromes P450 2a6, 2c9, 3a4, sulfotransferase, and the pregnane-X-receptor in order to flag their possible interactions with these proteins involved in the metabolism of substances. The resulting compounds may have promise to be further developed for the treatment of leishmaniasis.


Assuntos
Antiprotozoários/química , Arginase/antagonistas & inibidores , Inibidores Enzimáticos/química , Flavonoides/química , Antiprotozoários/farmacologia , Simulação por Computador , Bases de Dados de Compostos Químicos , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Humanos , Leishmania/enzimologia , Leishmania/patogenicidade , Estrutura Molecular , Proteínas de Protozoários/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade
4.
Methods Mol Biol ; 1762: 1-19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594764

RESUMO

The term drug design describes the search of novel compounds with biological activity, on a systematic basis. In its most common form, it involves modification of a known active scaffold or linking known active scaffolds, although de novo drug design (i.e., from scratch) is also possible. Though highly interrelated, identification of active scaffolds should be conceptually separated from drug design. Traditionally, the drug design process has focused on the molecular determinants of the interactions between the drug and its known or intended molecular target. Nevertheless, current drug design also takes into consideration other relevant processes than influence drug efficacy and safety (e.g., bioavailability, metabolic stability, interaction with antitargets).This chapter provides an overview on possible approaches to identify active scaffolds (including in silico approximations to approach that task) and computational methods to guide the subsequent optimization process. It also discusses in which situations each of the overviewed techniques is more appropriate.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Disponibilidade Biológica , Simulação por Computador , Ligantes , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa