Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(51)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916295

RESUMO

In cuprate superconductors, due to strong electronic correlations, there are multiple intertwined orders which either coexist or compete with superconductivity. Among them, the antiferromagnetic (AF) order is the most prominent one. In the region where superconductivity sets in, the long-range AF order is destroyed. Yet the residual short-range AF spin fluctuations are present up to a much higher doping, and their role in the emergence of the superconducting phase is still highly debated. Here, by using a spin-polarized scanning tunneling microscope, we directly visualize an emergent incommensurate AF order in the nearby region of Fe impurities embedded in the optimally doped Bi2Sr2CaCu2O8+δ (Bi2212). Remarkably, the Fe impurities suppress the superconducting coherence peaks with the gapped feature intact, but pin down the ubiquitous short-range incommensurate AF order. Our work shows an intimate relation between antiferromagnetism and superconductivity.

2.
Proc Natl Acad Sci U S A ; 117(1): 221-227, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31857387

RESUMO

The recent discovery of the interfacial superconductivity (SC) of the Bi2Te3/Fe1+yTe heterostructure has attracted extensive studies due to its potential as a novel platform for trapping and controlling Majorana fermions. Here we present studies of another topological insulator (TI)/Fe1+yTe heterostructure, Sb2Te3/Fe1+yTe, which also has an interfacial 2-dimensional SC. The results of transport measurements support that reduction of the excess Fe concentration of the Fe1+yTe layer not only increases the fluctuation of its antiferromagnetic (AFM) order but also enhances the quality of the SC of this heterostructure system. On the other hand, the interfacial SC of this heterostructure was found to have a wider-ranging TI-layer thickness dependence than that of the Bi2Te3/Fe1+yTe heterostructure, which is believed to be attributed to the much higher bulk conductivity of Sb2Te3 that enhances indirect coupling between its top and bottom topological surface states (TSSs). Our results provide evidence of the interplay among the AFM order, itinerant carries from the TSSs, and the induced interfacial SC of the TI/Fe1+yTe heterostructure system.

3.
Nano Lett ; 22(10): 3946-3952, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35549241

RESUMO

We show that the anisotropic energy of a 2D antiferromagnet is greatly enhanced via stacking on a magnetic substrate layer, arising from the sublattice-dependent interlayer magnetic interaction that defines an effective anisotropic energy. Interestingly, this effective energy couples strongly with the interlayer stacking order and the magnetic order of the substrate layer, providing unique mechanical and magnetic means to control the antiferromagnetic order. These two types of control methods distinctly affect the sublattice magnetization dynamics, with a change in the ratio of sublattice precession amplitudes in the former and its chirality in the latter. In moiré superlattices formed by a relative twist or strain between the layers, the coupling with stacking order introduces a landscape of effective anisotropic energy across the moiré, which can be utilized to create nonuniform antiferromagnetic textures featuring periodically localized low-energy magnons.

4.
J Phys Condens Matter ; 36(26)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38527369

RESUMO

We examine the possible existence of Dirac semimetal with magnetic order in a two-dimensional system with a nonsymmorphic symmetry by using the Hartree-Fock mean-field theory within the Hubbard model. We locate the region in the second-neighbor spin-orbit coupling vs Hubbard interaction phase diagram, where such a state is stabilized. The edge states for the ribbons along two orthogonal directions concerning the orientation of in-plane magnetic moments are obtained. Finally, the effect of the in-plane magnetic field, which results in the stabilization of the Weyl semimetallic (WSM) state, and the nature of the edge states corresponding to the WSM state for ribbon geometries are also explored.

5.
J Phys Condens Matter ; 35(4)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541510

RESUMO

With electron fillingn = 1 in theSr2VO4compound, the octahedrally coordinatedt2gorbitals are strongly active when the tetragonal distortion induced crystal field is tuned by external agent such as pressure. Considering the full range of crystal field induced tetragonal splitting in a realistic three-orbital model, collective spin-orbital excitations are investigated using the generalized self-consistent plus fluctuation approach. At ambient pressure, an entangled orbital + antiferromagnetic order is found to be stabilized beyond a critical value (∼30 meV) of spin-orbit coupling which is in the realistic range for 3d ions. The behavior of the calculated energy scales of collective excitations with crystal field is consistent with that of the transition temperatures with pressure as obtained from susceptibility and resistivity anomalies in high-pressure studies.

6.
ACS Nano ; 16(3): 3573-3581, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35156797

RESUMO

The f-driven temperature scales at the surfaces of strongly correlated materials have increasingly come into the focus of research efforts. Here, we unveil the emergence of a two-dimensional Ce Kondo lattice, which couples ferromagnetically to the ordered Co lattice below the P-terminated surface of the antiferromagnet CeCo2P2. In its bulk, Ce is passive and behaves tetravalently. However, because of symmetry breaking and an effective magnetic field caused by an uncompensated ferromagnetic Co layer, the Ce 4f states become partially occupied and spin-polarized near the surface. The momentum-resolved photoemission measurements indicate a strong admixture of the Ce 4f states to the itinerant bands near the Fermi level including surface states that are split by exchange interaction with Co. The temperature-dependent measurements reveal strong changes of the 4f intensity at the Fermi level in accordance with the Kondo scenario. Our findings show how rich and diverse the f-driven properties can be at the surface of materials without f-physics in the bulk.

7.
Nanomaterials (Basel) ; 11(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947669

RESUMO

The intrinsic magnetic topological insulator MnBi2Te4 has attracted much attention due to its special magnetic and topological properties. To date, most reports have focused on bulk or flake samples. For material integration and device applications, the epitaxial growth of MnBi2Te4 film in nanoscale is more important but challenging. Here, we report the growth of self-regulated MnBi2Te4 films by the molecular beam epitaxy. By tuning the substrate temperature to the optimal temperature for the growth surface, the stoichiometry of MnBi2Te4 becomes sensitive to the Mn/Bi flux ratio. Excessive and deficient Mn resulted in the formation of a MnTe and Bi2Te3 phase, respectively. The magnetic measurement of the 7 SL MnBi2Te4 film probed by the superconducting quantum interference device (SQUID) shows that the antiferromagnetic order occurring at the Néel temperature 22 K is accompanied by an anomalous magnetic hysteresis loop along the c-axis. The band structure measured by angle-resolved photoemission spectroscopy (ARPES) at 80 K reveals a Dirac-like surface state, which indicates that MnBi2Te4 has topological insulator properties in the paramagnetic phase. Our work demonstrates the key growth parameters for the design and optimization of the synthesis of nanoscale MnBi2Te4 films, which are of great significance for fundamental research and device applications involving antiferromagnetic topological insulators.

8.
J Phys Condens Matter ; 33(34)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34126598

RESUMO

A unified approach is presented for investigating coupled spin-orbital fluctuations within a realistic three-orbital model for strongly spin-orbit coupled systems with electron fillingsn= 3, 4, 5 in thet2gsector ofdyz,dxz,dxyorbitals. A generalized fluctuation propagator is constructed which is consistent with the generalized self-consistent Hartree-Fock approximation where all Coulomb interaction contributions involving orbital diagonal and off-diagonal spin and charge condensates are included. Besides the low-energy magnon, intermediate-energy orbiton and spin-orbiton, and high-energy spin-orbit exciton modes, the generalized spectral function also shows other high-energy excitations such as the Hund's coupling induced gapped magnon modes. We relate the characteristic features of the coupled spin-orbital excitations to the complex magnetic behavior resulting from the interplay between electronic bands, spin-orbit coupling, Coulomb interactions, and structural distortion effects, as realized in the compounds NaOsO3, Ca2RuO4, and Sr2IrO4.

9.
Adv Mater ; 32(14): e1904415, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32090416

RESUMO

Topologically protected magnetic states have a variety of potential applications in future spintronics owing to their nanoscale size (<100 nm) and unique dynamics. These fascinating states, however, usually are located at the interfaces or surfaces of ultrathin systems due to the short interaction range of the Dzyaloshinskii-Moriya interaction (DMI). Here, magnetic topological states in a 40-unit cells (16 nm) SrRuO3 layer are successfully created via an interlayer exchange coupling mechanism and the interfacial DMI. By controlling the thickness of an antiferromagnetic and ferromagnetic layer, interfacial ionic polarization, as well as the transformation between ferromagnetic and magnetic topological states, can be modulated. Using micromagnetic simulations, the formation and stability of robust magnetic skyrmions in SrRuO3 /BiFeO3 heterostructures are elucidated. Magnetic skyrmions in thick multiferroic heterostructures are promising for the development of topological electronics as well as rendering a practical approach to extend the interfacial topological phenomena to bulk via antiferromagnetic order.

10.
ACS Nano ; 14(6): 6539-6547, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32363855

RESUMO

How superconductivity emerges from antiferromagnetic ordering is an essential question for Fe-based superconductors. Here, we explore the effect of dimensionality on the interplay between antiferromagnetic ordering and superconductivity by investigating nanoribbons of single-layer FeTe1-xSex films grown on SrTiO3(001) substrates by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we find a one-dimensional (1D) superconducting channel 2 nm wide with a TC of 42 ± 4 K on the edge of FeTe1-xSex (x < 0.1) ribbons, coexisting with a non-superconducting ribbon interior that remains bicollinear antiferromagnetically ordered. Density functional theory calculations indicate that both Se and the presence of the edge destabilize the bicollinear antiferromagnetic magnetic order, resulting in a paramagnetic region near the edge with strong local checkerboard fluctuations that is conducive to superconductivity. Our results represent the highest TC achieved in 1D superconductors and demonstrate an effective route toward stabilizing superconductivity in Fe-based superconductors at reduced dimensions.

11.
Front Chem ; 6: 75, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619367

RESUMO

Negative thermal expansion (NTE) and magnetic properties were investigated for antiperovskite Ga1-x Cr x N0.83Mn3 compounds. As x increases, the temperature span (ΔT) of NTE related with Γ5g antiferromagnetic (AFM) order is expanded and shifted to lower temperatures. At x = 0.1, NTE happens between 256 and 318 K (ΔT = 62 K) with an average linear coefficient of thermal expansion, α L = -46 ppm/K. The ΔT is expanded to 81 K (151-232 K) in x = 0.2 with α L = -22.6 ppm/K. Finally, NTE is no longer visible for x ≥ 0.3. Ferromagnetic order is introduced by Cr doping and continuously strengthened with increasing x, which may impede the AFM ordering and thus account for the broadening of NTE temperature window. Moreover, our specific heat measurement suggests the electronic density of states at the Fermi level is enhanced upon Cr doping, which favors the FM order rather than the AFM one.

12.
Sci Bull (Beijing) ; 62(12): 857-862, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659320

RESUMO

One of the most strikingly universal features of the high-temperature superconductors is that the superconducting phase emerges in the close proximity of the antiferromagnetic phase, and the interplay between these two phases poses a long-standing challenge. It is commonly believed that, as the antiferromagnetic transition temperature is continuously suppressed to zero, there appears a quantum critical point, around which the existence of antiferromagnetic fluctuation is responsible for the development of the superconductivity. In contrast to this scenario, we report the observation of a bi-critical point identified at 2.88GPa and 26.02K in the pressurized high-quality single crystal Ca0.73La0.27FeAs2 by complementary in-situ high pressure measurements. At the critical pressure, we find that the antiferromagnetism suddenly disappears and superconductivity simultaneously emerges at almost the same temperature, and that the external magnetic field suppresses the superconducting transition temperature but hardly affects the antiferromagnetic transition temperature.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa