RESUMO
Senecavirus A (SVA) is an oncolytic RNA virus, and it is the ideal oncolytic virus that can be genetically engineered for editing. However, there has not been much exploration into creating SVA viruses that carry antitumor genes to increase their oncolytic potential. The construction of SVA viruses carrying antitumor genes that enhance oncolytic potential has not been fully explored. In this study, a recombinant SVA-CH-01-2015 virus (p15A-SVA-clone) expressing the human p16INK4A protein, also known as cell cycle-dependent protein kinase inhibitor 2A (CDKN2A), was successfully rescued and characterized. The recombinant virus, called SVA-p16, exhibited similar viral replication kinetics to the parent virus, was genetically stable, and demonstrated enhanced antitumor effects in Ishikawa cells. Additionally, another recombinant SVA virus carrying a reporter gene (iLOV), SVA-iLOV, was constructed and identified using the same construction method as an auxiliary validation. Collectively, this study successfully created a new recombinant virus, SVA-p16, that showed increased antitumor effects and could serve as a model for further exploring the antitumor potential of SVA as an oncolytic virus.
Assuntos
Doenças Transmissíveis , Vírus Oncolíticos , Picornaviridae , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Vírus Oncolíticos/genética , RNARESUMO
Due to the lack of chemotherapeutic drugs that selectively affect cervical cancer cells, natural sources such as snake venom are currently being investigated for molecules with antitumor potential. Pllans-II, a phospholipase A2 type-Asp49 from Porthidium lansbergii lansbergii snake venom, induced cell death in a cervical cancer cell line-Ca Ski-related to dysfunction in the ability to resolve endoplasmic reticulum stress, evidenced by sub-expression of genes such as PERK, ERO1 PDIs, HSP70, and CHOP. Western blot analysis validated the last two genes' sub-expression at the protein level. In addition, Pllans-II presented a dose-dependent cytotoxic effect on cancer cells and an insignificant effect on healthy endothelial cells (HUVEC). Additionally, Pllans-II inhibited cancer cells' adhesion and migration capacity, induced cell cycle arrest in the G2/M phase, and induced apoptosis stimulated possibly by the extrinsic route. These results demonstrate for the first time that Pllans-II has an antitumor effect on a squamous epithelial cervical cancer cell line and represents a possible biotechnological tool for designing a prominent antitumor agent.
Assuntos
Antineoplásicos , Neoplasias Ósseas , Neoplasias da Mama , Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Células Endoteliais , Feminino , Humanos , Fosfolipases A2/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologiaRESUMO
It is well known that abiotic components can affect biosynthetic pathways in the production of certain volatile compounds. The aim of this study was to compare the chemical composition of essential oils obtained from Orlaya grandiflora (L.) Hoffm. collected from two localities in Serbia (continental climate, OG1) and Montenegro (Mediterranean climate, OG2) and to assess their antitumor potential on the human colon cancer HCT-116 and breast cancer MDA-MB-231 cell lines. EOs obtained by hydrodistillation were analyzed using GC-MS and GC-FID methods. The results indicate considerable differences in the chemical compositions of the two samples. Although in both samples the main class of volatiles observed was sesquiterpenes (47.5% for OG1 and 70.1% for OG2), the OG1 sample was characterized by a high amount of monoterpene hydrocarbons (29.3%), and sesquiterpene germacrene D (29.5%) as the most abundant compound. On the other hand, the OG2 sample contained a high quantity of oxygenated sesquiterpenes (20.6%), and ß-elemene (22.7%) was the major constituent. The possible antitumor mechanisms of these EOs in the HCT-116 and MDA-MB-231 cell lines were examined by means of cell viability, apoptosis, redox potential, and migratory capacity. The antiviability potential appeared to be dose dependent, since the results showed that both EOs decreased the viability of the tested cells. Stronger antitumor effects were shown in MDA-MB-231 cells after short-term treatment, especially at the highest applied concentration, where the percentage of viability was reduced by over 40%. All tested concentrations of EOs exhibited proapoptotic activity and elevated activity of caspase-3 in a dose- and time-dependent manner. The results also showed decreased concentrations of superoxide anion radical in the treated cells, which indicates their significant antioxidative role. Long-term treatments showed mild recovery effects on cell viability in both cell lines, probably caused by the balancing of redox homeostasis. Elevated levels of nitrites indicate high levels of nitric oxide (NO) production and suggest its higher bioavailability due to the antioxidative environment. The tested EOs also induced a drop in migratory capacity, especially after short-time treatments. Taken together, these results suggest considerable antitumor activity of both EOs, which could have potential therapeutic applications.
Assuntos
Apiaceae , Óleos Voláteis , Sesquiterpenos , Antioxidantes/química , Caspase 3 , Homeostase , Humanos , Monoterpenos/química , Óxido Nítrico , Nitritos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Oxirredução , Sesquiterpenos/química , Sesquiterpenos/farmacologia , SuperóxidosRESUMO
Annona muricata (Am) is a plant used in traditional Mexican medicine to treat cancer. In this study, ethanol extracts of Am collected in Acapulco and Tecpan from Guerrero state were evaluated orally on Balb/c mice inoculated with 4T1 cells, for cytotoxic activity (CA) on 4T1 cells, in brine shrimp lethality assay (BSLA), and for acute oral toxicity in mice. In addition, ethanol extracts were subjected to high-performance liquid chromatography (HPLC) with diode array detection. Results showed that the extracts collected in December in Acapulco (AcDe) and Tecpan (TeDe) exhibited the most significant antitumor and cytotoxic activity. In the BSLA, the most important effect was observed in the extracts from Acapulco and Tecpan collected in June (AcJu) and August (TeAg), respectively. The samples from Acapulco (AcJu, and AcAg) and Tecpan (TeJu and TeAg) showed the highest toxicity. The analysis of the extracts, AcDe and TeDe, by HPLC revealed that flavonoids, rutin, narcissin, and nicotinflorin were the major components. These findings suggest that extracts from Am collected in Acapulco and Tecpan in the month of December may be an important source to obtain flavonoid glycosides with anticancer potential specifically against breast cancer. This also supports the use of Am to treat cancer in Mexican traditional medicine.
Assuntos
Annona/química , Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Artemia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Medicina Tradicional , México , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células Tumorais CultivadasRESUMO
Ganoderma lucidum is one of the most widely studied mushroom species, particularly in what concerns its medicinal properties. Previous studies (including those from some of us) have shown some evidence that the methanolic extract of G. lucidum affects cellular autophagy. However, it was not known if it induces autophagy or decreases the autophagic flux. The treatment of a gastric adenocarcinoma cell line (AGS) with the mushroom extract increased the formation of autophagosomes (vacuoles typical from autophagy). Moreover, the cellular levels of LC3-II were also increased, and the cellular levels of p62 decreased, confirming that the extract affects cellular autophagy. Treating the cells with the extract together with lysossomal protease inhibitors, the cellular levels of LC3-II and p62 increased. The results obtained proved that, in AGS cells, the methanolic extract of G. lucidum causes an induction of autophagy, rather than a reduction in the autophagic flux. To our knowledge, this is the first study proving that statement.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Reishi/química , Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Humanos , Hidroxibenzoatos/química , Neoplasias Gástricas/metabolismoRESUMO
Despite advances in chemotherapeutic drugs used against cervical cancer, available chemotherapy treatments adversely affect the patient's quality of life. For this reason, new molecules from natural sources with antitumor potential and few side effects are required. In previous research, Pllans-II, a phospholipase A2 type-Asp49 from Porthidium lansbergii lansbergii snake venom, has shown selective attack against the HeLa and Ca Ski cervical cancer cell lines. This work suggests that the cytotoxic effect generated by Pllans-II on HeLa cells is triggered without affecting the integrity of the cytoplasmic membrane or depolarizing the mitochondrial membranes. The results allow us to establish that cell death in HeLa is related to the junction blockage between α5ß1 integrins and fibronectin of the extracellular matrix. Pllans-II reduces the cells' ability of adhesion and affects survival and proliferation pathways mediated by intracellular communication with the external environment. Our findings confirmed Pllans-II as a potential prototype for developing a selective chemotherapeutic drug against cervical cancer.
Assuntos
Antineoplásicos , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Adesão Celular , Células HeLa , Qualidade de Vida , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Integrina alfa5beta1RESUMO
The aim of this study was to investigate the chemical profile and the cytotoxic activity in two castration-resistant prostate cancer (CRPC) cell lines of the leaf essential oil in Myrtus communis subsp. tarentina (L.) Nyman (EO MT), which was cultivated at the Ghirardi Botanical Garden (Toscolano Maderno, Brescia, Italy). The leaves were air-dried and extracted by hydrodistillation with a Clevenger-type apparatus, and the EO profile was characterized by GC/MS. For the cytotoxic activity investigation, we analyzed the cell viability by MTT assay, and the apoptosis induction by Annexin V/propidium iodide assay/Western blot analysis of cleaved caspase 3 and cleaved PARP proteins. Moreover, the cellular migration was analyzed by Boyden's chamber assay and the distribution of actin cytoskeleton filaments by immunofluorescence. We identified 29 total compounds; the main compound classes were oxygenated monoterpenes, monoterpene hydrocarbons, and sesquiterpenes. The main constituents were α-pinene, α-humulene, α-terpineol, durohydroquinon, linalool, geranyl acetate, and ß-caryophyllene. We found that EO MT was able to reduce cellular viability, activating an apoptotic process, and to decrease the migratory capacity of CRPC cells. These results suggest that it might be interesting to further investigate the effects of single compounds present in EO MT for their possible use in prostate cancer treatment.
RESUMO
The aim of this study is to evaluate the chemical composition of Tanacetum balsamita L. essential oils (EOs) obtained from different plant organs, flowers (FEO), leaves (LEO), and stems (SEO), as well as to assess their biological properties. The results obtained by using GC and GC/MS analysis indicate that this plant belongs to the carvone chemotype. Moreover, we examined the oil's antimicrobial and antitumor potential. Antimicrobial effects were determined using minimum inhibitory concentrations assay and the vapor phase method. Obtained results indicate better antimicrobial activity of investigated EO samples compared to the commercially available antibiotics. On the treatment with FEO, Y. enterocolitica and H. influenzae showed high sensitivity, while treatment with LEO and SEO showed the highest effects against S. aureus. The vapor phase method, as an in situ antibacterial analysis, was performed using LEO. Obtained results showed that this EO has significant activity toward S. pneumoniae in the apple and carrot models, L. monocytogenes in the pear model, and Y. enterocolitica in the white radish model. The potential antitumor mechanisms of FEO, LEO, and SEO were determined by the means of cell viability, redox potential, and migratory capacity in the MDA-MB-231 and MDA-MB-468 cell lines. The results show that these EOs exert antiviability potential in a time- and dose-dependent manner. Moreover, treatments with these EOs decreased the levels of superoxide anion radical and increased the levels of nitric oxide in both tested cell lines. The results regarding total and reduced glutathione revealed, overall, an increase in the levels of total glutathione and a decrease in the levels of reduced glutathione, indicating strong antioxidative potential in tested cancer cells in response to the prooxidative effects of the tested EOs. The tested EOs also exerted a drop in migratory capacity, which indicates that they can be potentially used as chemotherapeutic agents.
RESUMO
Cancer is still one of the main causes of death worldwide. For this reason, new compounds that have chemotherapeutic potential have been identified. One such group of substances is Solanaceae glycoalkaloids (GAs). They are natural compounds produced by plants widely used in traditional medicine for healing many disorders. Among others, GAs exhibit significant antitumor properties, for example, a strong inhibitory effect on cancer cell growth. This activity can result in the induction of tumor cell apoptosis, which can occur via different molecular pathways. The molecular mechanisms of the action of GAs are the subject of intensive research, as improved understanding could lead to the development of new cancer therapies. The genetic basis for the formation of neoplasms are mutations in protooncogenes, suppressors, and apoptosis-controlling and repair genes; therefore, substances with antineoplastic properties may affect the levels of their expression or the levels of their expression products. Therapeutic compounds can be applied separately or in combination with other drugs to increase the efficiency of cancer therapy; they can act on the cell through various mechanisms at different stages of carcinogenesis, inducing the process of apoptosis, blocking cell proliferation and migration, and inhibiting angiogenesis. This review summarizes the newest studies on the anticancer properties of solanine (SN), chaconine (CH), solasonine (SS), solamargine (SM), tomatine (TT) and their extracts from Solanum plants.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The crude extracts of the medicinal mushroom Inonotus obliquus have been used as an effective traditional medicine to treat malicious tumors, gastritis, gastric ulcers, and other inflammatory conditions in Russia and most Baltic countries. AIM OF THIS REVIEW: Deciphering the antitumoral potential of the bioactive metabolites from I. obliquus and addressing its possibility to be used as effective agents for tumor treatment, restoration of compromised immunity and protection of gastrointestinal damage caused by chemotherapy. MATERIALS AND METHODS: We analysed the current achievements and dilemma in tumor chemo- or immunotherapy. In this context, we searched the published literatures on I. obliquus covering from 1990 to 2020, and summarized the activities of antitumor, antioxidation, and immunomodulation by the polysaccharides, triterpenoids, small phenolic compounds, and hispidin polyphenols. By comparing the merits and shortcomings of current and traditional methodology for tumor treatment, we further addressed feasibility for the use of I. obliquus as an effective natural drug for tumor treatment and prevention. RESULTS: The diverse bioactive metabolites confer I. obliquus great potential to inhibit tumor growth and metastasis. Its antitumor activities are achieved either through suppressing multiple oncogenic signals including but not limited to the activation of NF-κB and FAK, and the expression of RhoA/MMP-9 via ERK1/2 and PI3K/Akt signaling pathway. The antitumor activities can also be achieved by inhibiting tyrosinase activity via PAK1-dependent signaling pathway or altering lysosomal membrane permeabilization through blocking tubulin polymerization and/or disturbing energy metabolism through LKB1/AMPK pathway. In addition, the metabolites from I. obliquus also harbour the potentials to reverse MDR either through selective inhibition on P-gp/ABCB1 or MRP1/ABCC1 proteins or the induction of G2/M checkpoint arrest in tumor cells of chemoresistant phenotypes mediated by Nox/ROS/NF-kB/STAT3 signaling pathway. In addition to the eminent effects in tumor inhibition, the metabolites in I. obliquus also exhibit immunomodulatory potential to restore the compromised immunity and protect against ulcerative damage of GI tract caused by chemotherapy. CONCLUSIONS: I. obliquus possesses the potential to reduce incidence of tumorigenesis in healthy people. For those whose complete remission has been achieved by chemotherapy, administration of the fungus will inhibit the activation of upstream oncogenic signals and thereby prevent metastasis; for those who are in the process of chemotherapy administration of the fungus will not only chemosensitize the tumor cells and thereby increasing the chemotherapeutic effects, but also help to restore the compromised immunity and protect against ulcerative GI tract damage and other side-effects induced by chemotherapy.
Assuntos
Antineoplásicos/farmacologia , Inonotus/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/isolamento & purificação , Misturas Complexas/farmacologia , Humanos , Medicina Tradicional , Neoplasias/patologia , Federação RussaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Chronic inflammation has an important role in the development of cancers. Hypericum sampsonii, known as "Yuanbao Cao", is mainly distributed in the southwest of China. As a folk medicinal plant, "Yuanbao Cao" is traditionally used for treatment of various inflammation-related diseases including swelling, burns, arthritis, and dermatitis, etc. The plant is a promising anticancer herb. However, there is no research on the antitumor potential of this plant from the view of cancer-related inflammation strategy. AIM OF THE STUDY: To explore the H. sampsonii in relation to cancer-related chemical constituents with anti-inflammatory and cytotoxic activity in cancer-related inflammation. MATERIALS AND METHODS: The chemical constituents of H. sampsonii were isolated by repeated chromatography techniques, and their structures were identified mainly by spectroscopic methods and compared to published data. The chemical profile of the herb was analyzed using HPLC. The cytotoxicities of compounds against five cancer cell lines: human melanoma cell (A375), human breast cancer cell (MDA-MB-231), human gastric cancer cell (SGC-7901), human colon cancer cell (SiHa), and human bone marrow neuroblastoma cell (SHSY-5Y), were tested using MTT assay; their anti-inflammatory activities were evaluated by inhibition on NO production in LPS-stimulated RAW 264.7, THP-1 and BV-2 microglial cells. RESULTS: Twenty-five compounds, including four phenols (1-4), two anthraquinonoids (5 and 6), six xanthones (7-12), one benzophenone (13), one phloroglucinol (14), nine flavonoids (15-23), one sterol (24) and one alkaloid (25), were isolated from the EtOH extract of H. sampsonii. Of them, compounds 3, 4, 6, 7, 10-14, 17, 19, 22 and 23 were reported in H. sampsonii for the first time. HPLC analysis showed that flavonoids were the main constituents in the herb. MTT assay revealed that compounds 1, 2, 5-14, 15, 17, 18, 20, 21, 22 and 25 had selective cytotoxic activities (IC50: 7.52-158.90 µM) against tested cancer cells, in which compound 5, 6, 13 and 14 displayed high activities against A375, MDA-MB-231, SiHa and SHSY-5Y. In the screening experiment of anti-inflammatory activity, most compounds (1-2, 5-23) showed considerable high anti-inflammatory activities (IC50: 10.59-42.75 µM), in which compounds 5, 6, 13, 14, and 15 exhibited high anti-inflammatory activities in LPS-stimulated RAW264.7, THP-1 and BV-2 microglial cells. CONCLUSIONS: Compounds 3, 4, 6, 7, 10-14, 17, 19, 22 and 23 were isolated for the first time from H. sampsonii. Compound 5, 6, 13 and 14 displayed high cytotoxic activities against the tested cancer cell lines. Compounds (1-2, 5-23) showed anti-inflammatory activities, of them, compounds 5, 6, 13, 14 and 15 exhibited the high activity. From the view of cancer-related inflammation point, not only the compounds with high cytotoxicity, but those compounds with anti-inflammatory activities, especially the flavonoids, contribute to the antitumor potential of H. sampsonii. The results and viewpoint of present study provide a different insight to better understand the antitumor potential of H. sampsonii, and may also promote the reasonable usage of this folk medical herb.
Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Hypericum , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Hypericum/química , Mediadores da Inflamação/metabolismo , Concentração Inibidora 50 , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Células THP-1RESUMO
BACKGROUND: Phospholipases A2 (PLA2s) are abundant components of snake venoms that have been extensively studied due to their pharmacological and pathophysiological effects on living organisms. This study aimed to assess the antitumor potential of BthTX-I, a basic myotoxic PLA2 isolated from Bothrops jararacussu venom, by evaluating in vitro processes of cytotoxicity, modulation of the cell cycle and induction of apoptosis in human (HL-60 and HepG2) and murine (PC-12 and B16F10) tumor cell lines. METHODS: The cytotoxic effects of BthTX-I were evaluated on the tumor cell lines HL-60 (promyelocytic leukemia), HepG2 (human hepatocellular carcinoma), PC-12 (murine pheochromocytoma) and B16F10 (murine melanoma) using the MTT method. Flow cytometry technique was used for the analysis of cell cycle alterations and death mechanisms (apoptosis and/or necrosis) induced in tumor cells after treatment with BthTX-I. RESULTS: It was observed that BthTX-I was cytotoxic to all evaluated tumor cell lines, reducing their viability in 40 to 50 %. The myotoxin showed modulating effects on the cell cycle of PC-12 and B16F10 cells, promoting delay in the G0/G1 phase. Additionally, flow cytometry analysis indicated cell death mainly by apoptosis. B16F10 was more susceptible to the effects of BthTX-I, with ~40 % of the cells analyzed in apoptosis, followed by HepG2 (~35 %), PC-12 (~25 %) and HL-60 (~4 %). CONCLUSIONS: These results suggest that BthTX-I presents antitumor properties that may be useful for developing new therapeutic strategies against cancer.
RESUMO
The aim of this study was to characterise sweet cherry regarding nutritional composition of the fruits, and individual phytochemicals and bioactive properties of fruits and stems. The chromatographic profiles in sugars, organic acids, fatty acids, tocopherols and phenolic compounds were established. All the preparations (extracts, infusions and decoctions) obtained using stems revealed higher antioxidant potential than the fruits extract, which is certainly related with its higher phenolic compounds (phenolic acids and flavonoids) concentration. The fruits extract was the only one showing antitumor potential, revealing selectivity against HCT-15 (colon carcinoma) (GI50â¼74 µg/mL). This could be related with anthocyanins that were only found in fruits and not in stems. None of the preparations have shown hepatotoxicity against normal primary cells. Overall, this study reports innovative results regarding chemical and bioactive properties of sweet cherry stems, and confirmed the nutritional and antioxidant characteristics of their fruits.
Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Frutas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prunus/química , Caules de Planta/químicaRESUMO
Background Phospholipases A 2 (PLA 2 s) are abundant components of snake venoms that have been extensively studied due to their pharmacological and pathophysiological effects on living organisms. This study aimed to assess the antitumor potential of BthTX-I, a basic myotoxic PLA 2isolated from Bothrops jararacussu venom, by evaluating in vitro processes of cytotoxicity, modulation of the cell cycle and induction of apoptosis in human (HL-60 and HepG2) and murine (PC-12 and B16F10) tumor cell lines. Methods The cytotoxic effects of BthTX-I were evaluated on the tumor cell lines HL-60 (promyelocytic leukemia), HepG2 (human hepatocellular carcinoma), PC-12 (murine pheochromocytoma) and B16F10 (murine melanoma) using the MTT method. Flow cytometry technique was used for the analysis of cell cycle alterations and death mechanisms (apoptosis and/or necrosis) induced in tumor cells after treatment with BthTX-I. Results It was observed that BthTX-I was cytotoxic to all evaluated tumor cell lines, reducing their viability in 40 to 50 %. The myotoxin showed modulating effects on the cell cycle of PC-12 and B16F10 cells, promoting delay in the G0/G1 phase. Additionally, flow cytometry analysis indicated cell death mainly by apoptosis. B16F10 was more susceptible to the effects of BthTX-I, with ~40 % of the cells analyzed in apoptosis, followed by HepG2 (~35 %), PC-12 (~25 %) and HL-60 (~4 %). Conclusions These results suggest that BthTX-I presents antitumor properties that may be useful for developing new therapeutic strategies against cancer.
Assuntos
Animais , Bothrops , Neoplasias/terapia , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/isolamento & purificaçãoRESUMO
Background Phospholipases A 2 (PLA 2 s) are abundant components of snake venoms that have been extensively studied due to their pharmacological and pathophysiological effects on living organisms. This study aimed to assess the antitumor potential of BthTX-I, a basic myotoxic PLA 2isolated from Bothrops jararacussu venom, by evaluating in vitro processes of cytotoxicity, modulation of the cell cycle and induction of apoptosis in human (HL-60 and HepG2) and murine (PC-12 and B16F10) tumor cell lines. Methods The cytotoxic effects of BthTX-I were evaluated on the tumor cell lines HL-60 (promyelocytic leukemia), HepG2 (human hepatocellular carcinoma), PC-12 (murine pheochromocytoma) and B16F10 (murine melanoma) using the MTT method. Flow cytometry technique was used for the analysis of cell cycle alterations and death mechanisms (apoptosis and/or necrosis) induced in tumor cells after treatment with BthTX-I. Results It was observed that BthTX-I was cytotoxic to all evaluated tumor cell lines, reducing their viability in 40 to 50 %. The myotoxin showed modulating effects on the cell cycle of PC-12 and B16F10 cells, promoting delay in the G0/G1 phase. Additionally, flow cytometry analysis indicated cell death mainly by apoptosis. B16F10 was more susceptible to the effects of BthTX-I, with ~40 % of the cells analyzed in apoptosis, followed by HepG2 (~35 %), PC-12 (~25 %) and HL-60 (~4 %). Conclusions These results suggest that BthTX-I presents antitumor properties that may be useful for developing new therapeutic strategies against cancer.(AU)