Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 135(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36444566

RESUMO

Polarized transport is essential for constructing multiple plasma membrane domains in the cell. Drosophila photoreceptors are an excellent model system to study the mechanisms of polarized transport. Rab11 is the key factor regulating the post-Golgi transport of rhodopsin 1 (Rh1; also known as NinaE), a photoreceptive protein, to the rhabdomere, a photoreceptive plasma membrane. Here, we found that neuronal Synaptobrevin (nSyb) colocalizes with Rab11 on the trans-side of Golgi stacks and post-Golgi vesicles at the rhabdomere base, and nSyb deficiency impairs rhabdomeric transport and induces accumulation of Rh1 and vesicles in the cytoplasm; this is similar to the effects of Rab11 loss. These results indicate that nSyb acts as a post-Golgi SNARE toward rhabdomeres. Surprisingly, in Rab11-, Rip11- and nSyb-deficient photoreceptors, illumination enhances cytoplasmic accumulation of Rh1, which colocalizes with Rab11, Rabenosyn5, nSyb and Arrestin 1 (Arr1). Arr1 loss, but not Rab5 dominant negative (Rab5DN) protein expression, inhibits the light-enhanced cytoplasmic Rh1 accumulation. Rab5DN inhibits the generation of Rh1-containing multivesicular bodies rather than Rh1 internalization. Overall, these results indicate that exocytic Rh1 mingles with endocytosed Rh1 and is then transported together to rhabdomeres.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Rodopsina/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Drosophila melanogaster/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768350

RESUMO

Mutations in genes encoding molecular chaperones, for instance the genes encoding the subunits of the chaperonin CCT (chaperonin containing TCP-1, also known as TRiC), are associated with rare neurodegenerative disorders. Using a classical molecular dynamics approach, we investigated the occurrence of conformational changes and differences in physicochemical properties of the CCT5 mutations His147Arg and Leu224Val associated with a sensory and a motor distal neuropathy, respectively. The apical domain of both variants was substantially but differently affected by the mutations, although these were in other domains. The distribution of hydrogen bonds and electrostatic potentials on the surface of the mutant subunits differed from the wild-type molecule. Structural and dynamic analyses, together with our previous experimental data, suggest that genetic mutations may cause different changes in the protein-binding capacity of CCT5 variants, presumably within both hetero- and/or homo-oligomeric complexes. Further investigations are necessary to elucidate the molecular pathogenic pathways of the two variants that produce the two distinct phenotypes. The data and clinical observations by us and others indicate that CCT chaperonopathies are more frequent than currently believed and should be investigated in patients with neuropathies.


Assuntos
Chaperonina com TCP-1 , Chaperonas Moleculares , Simulação de Dinâmica Molecular , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/química , Chaperoninas/genética , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Mutação
3.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861692

RESUMO

Heat shock proteins play roles in assisting other proteins to fold correctly and in preventing the aggregation and accumulation of proteins in misfolded conformations. However, the process of aging significantly degrades this ability to maintain protein homeostasis. Consequently, proteins with incorrect conformations are prone to aggregate and accumulate in cells, and this aberrant aggregation of misfolded proteins may trigger various neurodegenerative diseases, such as Parkinson's disease. Here, we investigated the possibilities of suppressing α-synuclein aggregation by using a mutant form of human chaperonin Hsp60, and a derivative of the isolated apical domain of Hsp60 (Hsp60 AD(Cys)). In vitro measurements were used to detect the effects of chaperonin on amyloid fibril formation, and interactions between Hsp60 proteins and α-synuclein were probed by quartz crystal microbalance analysis. The ability of Hsp60 AD(Cys) to suppress α-synuclein intracellular aggregation and cytotoxicity was also demonstrated. We show that Hsp60 mutant and Hsp60 AD(Cys) both effectively suppress α-synuclein amyloid fibril formation, and also demonstrate for the first time the ability of Hsp60 AD(Cys) to function as a mini-chaperone inside cells. These results highlight the possibility of using Hsp60 AD as a method of prevention and treatment of neurodegenerative diseases.


Assuntos
Chaperonina 60/química , Chaperonina 60/farmacologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/farmacologia , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Sítios de Ligação , Linhagem Celular , Chaperonina 60/genética , Humanos , Proteínas Mitocondriais/genética , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Técnicas de Microbalança de Cristal de Quartzo , alfa-Sinucleína/química , alfa-Sinucleína/efeitos dos fármacos
4.
Development ; 142(5): 832-9, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25655700

RESUMO

Divisions that generate one neuronal lineage-committed and one self-renewing cell maintain the balance of proliferation and differentiation for the generation of neuronal diversity. The asymmetric inheritance of apical domains and components of the cell division machinery has been implicated in this process, and might involve interactions with cell fate determinants in regulatory feedback loops of an as yet unknown nature. Here, we report the dynamics of Anillin - an essential F-actin regulator and furrow component - and its contribution to progenitor cell divisions in the developing zebrafish retina. We find that asymmetrically dividing retinal ganglion cell progenitors position the Anillin-rich midbody at the apical domain of the differentiating daughter. anillin hypomorphic conditions disrupt asymmetric apical domain inheritance and affect daughter cell fate. Consequently, the retinal cell type composition is profoundly affected, such that the ganglion cell layer is dramatically expanded. This study provides the first in vivo evidence for the requirement of Anillin during asymmetric neurogenic divisions. It also provides insights into a reciprocal regulation between Anillin and the ganglion cell fate determinant Ath5, suggesting a mechanism whereby the balance of proliferation and differentiation is accomplished during progenitor cell divisions in vivo.


Assuntos
Proteínas Contráteis/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Proteínas Contráteis/genética , Imunofluorescência , Hibridização In Situ , Microscopia Confocal , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Adv Exp Med Biol ; 1074: 309-315, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721958

RESUMO

Canine bestrophinopathy (cBest) is an important translational model for BEST1-associated maculopathies in man that recapitulates the broad spectrum of clinical and molecular disease aspects observed in patients. Both human and canine bestrophinopathies are characterized by focal to multifocal separations of the retina from the RPE. The lesions can be macular or extramacular, and the specific pathomechanism leading to formation of these lesions remains unclear. We used the naturally occurring canine BEST1 model to examine factors that underlie formation of vitelliform lesions and addressed the susceptibility of the macula to its primary detachment in BEST1-linked maculopathies.


Assuntos
Bestrofinas/deficiência , Doenças do Cão/patologia , Modelos Animais , Epitélio Pigmentado da Retina/patologia , Distrofia Macular Viteliforme/veterinária , Animais , Bestrofinas/genética , Bestrofinas/fisiologia , Proteínas do Citoesqueleto/metabolismo , Doenças do Cão/genética , Doenças do Cão/metabolismo , Cães , Matriz Extracelular/patologia , Proteínas do Olho/metabolismo , Genes Recessivos , Humanos , Microvilosidades/patologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Descolamento Retiniano/etiologia , Epitélio Pigmentado da Retina/metabolismo , Especificidade da Espécie , Simportadores/metabolismo , Distrofia Macular Viteliforme/genética , Distrofia Macular Viteliforme/metabolismo , Distrofia Macular Viteliforme/patologia
6.
Biology (Basel) ; 12(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37237456

RESUMO

Genetic chaperonopathies are rare but, because of misdiagnosis, there are probably more cases than those that are recorded in the literature and databases. This occurs because practitioners are generally unaware of the existence and/or the symptoms and signs of chaperonopathies. It is necessary to educate the medical community about these diseases and, with research, to unveil their mechanisms. The structure and functions of various chaperones in vitro have been studied, but information on the impact of mutant chaperones in humans, in vivo, is scarce. Here, we present a succinct review of the most salient abnormalities of skeletal muscle, based on our earlier report of a patient who carried a mutation in the chaperonin CCT5 subunit and suffered from a distal motor neuropathy of early onset. We discuss our results in relation to the very few other published pertinent reports we were able to find. A complex picture of multiple muscle-tissue abnormalities was evident, with signs of atrophy, apoptosis, and abnormally low levels and atypical distribution patterns of some components of muscle and the chaperone system. In-silico analysis predicts that the mutation affects CCT5 in a way that could interfere with the recognition and handling of substrate. Thus, it is possible that some of the abnormalities are the direct consequence of defective chaperoning, but others may be indirectly related to defective chaperoning or caused by other different pathogenic pathways. Biochemical, and molecular biologic and genetic analyses should now help in understanding the mechanisms underpinning the histologic abnormalities and, thus, provide clues to facilitate diagnosis and guide the development of therapeutic tools.

7.
Front Mol Biosci ; 9: 887336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720129

RESUMO

Recognition of diseases associated with mutations of the chaperone system genes, e.g., chaperonopathies, is on the rise. Hereditary and clinical aspects are established, but the impact of the mutation on the chaperone molecule and the mechanisms underpinning the tissue abnormalities are not. Here, histological features of skeletal muscle from a patient with a severe, early onset, distal motor neuropathy, carrying a mutation on the CCT5 subunit (MUT) were examined in comparison with normal muscle (CTR). The MUT muscle was considerably modified; atrophy of fibers and disruption of the tissue architecture were prominent, with many fibers in apoptosis. CCT5 was diversely present in the sarcolemma, cytoplasm, and nuclei in MUT and in CTR and was also in the extracellular space; it colocalized with CCT1. In MUT, the signal of myosin appeared slightly increased, and actin slightly decreased as compared with CTR. Desmin was considerably delocalized in MUT, appearing with abnormal patterns and in precipitates. Alpha-B-crystallin and Hsp90 occurred at lower signals in MUT than in CTR muscle, appearing also in precipitates with desmin. The abnormal features in MUT may be the consequence of inactivity, malnutrition, denervation, and failure of protein homeostasis. The latter could be at least in part caused by malfunction of the CCT complex with the mutant CCT5 subunit. This is suggested by the results of the in silico analyses of the mutant CCT5 molecule, which revealed various abnormalities when compared with the wild-type counterpart, mostly affecting the apical domain and potentially impairing chaperoning functions. Thus, analysis of mutated CCT5 in vitro and in vivo is anticipated to provide additional insights on subunit involvement in neuromuscular disorders.

8.
Curr Opin Cell Biol ; 62: 144-149, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31869760

RESUMO

Cell polarization is critical for lineage segregation and morphogenesis during mammalian embryogenesis. However, the processes and mechanisms that establish cell polarity in the mammalian embryo are not well understood. Recent studies suggest that unique regulatory mechanisms are deployed by the mouse embryo to establish cell polarization. In this review, we discuss the current understanding of cell polarity establishment, focusing on the formation of the apical domain in the mouse embryo. We will also discuss outstanding questions and possible directions for future study.


Assuntos
Polaridade Celular/fisiologia , Animais , Embrião de Mamíferos , Camundongos
9.
Cell Rep ; 22(7): 1639-1646, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444419

RESUMO

Epithelial cells are polarized along their apical-basal axis by the action of the small GTPase Cdc42, which is known to activate the aPKC kinase at the apical domain. However, loss of aPKC kinase activity was reported to have only mild effects on epithelial cell polarity. Here, we show that Cdc42 also activates a second kinase, Pak1, to specify apical domain identity in Drosophila and mammalian epithelia. aPKC and Pak1 phosphorylate an overlapping set of polarity substrates in kinase assays. Inactivating both aPKC kinase activity and the Pak1 kinase leads to a complete loss of epithelial polarity and morphology, with cells losing markers of apical polarization such as Crumbs, Par3/Bazooka, or ZO-1. This function of Pak1 downstream of Cdc42 is distinct from its role in regulating integrins or E-cadherin. Our results define a conserved dual-kinase mechanism for the control of apical membrane identity in epithelia.


Assuntos
Membrana Celular/metabolismo , Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Quinases Ativadas por p21/metabolismo , Sequência de Aminoácidos , Animais , Células CACO-2 , Proteínas de Drosophila/metabolismo , Humanos , Camundongos , Fosforilação , Proteína Quinase C/metabolismo , Interferência de RNA , Quinases Ativadas por p21/química
10.
Stem Cell Reports ; 10(6): 1751-1765, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29779899

RESUMO

In the developing nervous system, neural stem cells are polarized and maintain an apical domain facing a central lumen. The presence of apical membrane is thought to have a profound influence on maintaining the stem cell state. With the onset of neurogenesis, cells lose their polarization, and the concomitant loss of the apical domain coincides with a loss of the stem cell identity. Little is known about the molecular signals controlling apical membrane size. Here, we use two neuroepithelial cell systems, one derived from regenerating axolotl spinal cord and the other from human embryonic stem cells, to identify a molecular signaling pathway initiated by lysophosphatidic acid that controls apical membrane size and consequently controls and maintains epithelial organization and lumen size in neuroepithelial rosettes. This apical domain size increase occurs independently of effects on proliferation and involves a serum response factor-dependent transcriptional induction of junctional and apical membrane components.


Assuntos
Autorrenovação Celular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células Neuroepiteliais/citologia , Células Neuroepiteliais/metabolismo , Neurogênese , Transdução de Sinais , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular , Membrana Celular/metabolismo , Polaridade Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Imunofluorescência , Expressão Gênica , Humanos , Lisofosfolipídeos/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células Neuroepiteliais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa