Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Immunol Rev ; 312(1): 52-60, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35665941

RESUMO

Neutrophils are immune cells involved in several inflammatory and homeostatic processes. Their capacity to release cargo can be classified based on whether the cargo is released on its own, or in conjunction with plasma membrane structures. Examples of plasma membrane-free secretion modes are degranulation, neutrophil extracellular trap (NET) release, and cytokine release through inflammasome formation. The most studied membrane-covered neutrophil-derived structures are exosomes and ectosomes that are collectively called extracellular vesicles (EV). Apoptotic vesicles are another recognized EV subtype. Over the last decade, additional membrane-covered neutrophil-derived structures were characterized: migratory cytoplasts, migrasomes, and elongated neutrophil-derived structures (ENDS). All these structures are smaller than the neutrophils, cannot reproduce themselves, and thus meet the latest consensus definition of EVs. In this review, we focus on the less well-studied neutrophil EVs: apoptotic vesicles, cytoplasts, migrasomes, and ENDS.


Assuntos
Micropartículas Derivadas de Células , Vesículas Extracelulares , Micropartículas Derivadas de Células/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inflamassomos/metabolismo , Neutrófilos
2.
Nano Lett ; 22(6): 2217-2227, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35254071

RESUMO

Agonists of stimulators of interferon genes (STING) are a promising class of immunotherapeutics that trigger potent innate immunity. However, the therapeutic efficacy of conventional STING agonists, such as 2',3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), is severely restricted to poor cytosolic delivery and lacks the capacity to promote the recognition of tumor-specific antigens. Here, we tackle these challenges through a nanovaccine platform based on Fenton-reactive and STING-activating nanoparticles, synergistically contributing to the generation of tumor-cell-derived apoptotic bodies (ABs). ABs loaded with exogenous cGAMP are readily phagocytosed by antigen-presenting cells (APCs), as a Trojan horse for rendering tumor cells with high immunogenicity instead of a noninflammatory response. This leads to enhanced STING activation and an improved tumor-specific antigen presentation ability, boosting the adaptive immunity in collaboration with innate immune. The strategy of exploiting a metal-based nanovaccine platform possesses great potential to be clinically translated into a trinitarian system of diagnosis, treatment, and prognosis.


Assuntos
Vesículas Extracelulares , Nanopartículas , Antígenos de Neoplasias , Imunidade Inata , Imunoterapia , Proteínas de Membrana
3.
Physiol Genomics ; 54(9): 350-359, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816651

RESUMO

Extracellular vesicles (EVs) are established mediators of adaptation to exercise. Currently, there are no published data comparing changes in EVs between men and women after resistance exercise. We tested the hypothesis that EV profiles would demonstrate a sex-specific signature following resistance exercise. Ten men and 10 women completed an acute heavy resistance exercise test for back squats using 75% of their one-repetition maximum. Blood was drawn before and immediately after exercise. EVs were isolated from plasma using size exclusion chromatography and stained with antibodies associated with exosomes (CD63), microvesicles (VAMP3), apoptotic bodies (THSD1), and a marker for skeletal muscle EVs (SGCA). CD63+ EV concentration and proportion of total EVs increased 23% (P = 0.006) and 113% (P = 0.005) in both sexes. EV mean size declined in men (P = 0.020), but not in women, suggesting a relative increase in small EVs in men. VAMP3+ EV concentration and proportion of total EVs increased by 93% (P = 0.025) and 61% (P = 0.030) in men and women, respectively. SGCA+ EV concentration was 69% higher in women compared with men independent of time (P = 0.007). Differences were also observed for CD63, VAMP3, and SGCA median fluorescence intensity, suggesting altered surface protein density according to sex and time. There were no significant effects of time or sex on THSD1+ EVs or fluorescence intensity. EV profiles, particularly among exosome-associated and muscle-derived EVs, exhibit sex-specific differences in response to resistance exercise which should be further studied to understand their relationship to training adaptations.


Assuntos
Exossomos , Vesículas Extracelulares , Treinamento Resistido , Biomarcadores/metabolismo , Exossomos/química , Exossomos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Masculino , Proteína 3 Associada à Membrana da Vesícula/metabolismo
4.
Subcell Biochem ; 97: 61-88, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33779914

RESUMO

In the final stages of apoptosis, apoptotic cells can generate a variety of membrane-bound vesicles known as apoptotic extracellular vesicles (ApoEVs). Apoptotic bodies (ApoBDs), a major subset of ApoEVs, are formed through a process termed apoptotic cell disassembly characterised by a series of tightly regulated morphological steps including plasma membrane blebbing, apoptotic membrane protrusion formation and fragmentation into ApoBDs. To better characterise the properties of ApoBDs and elucidate their function, a number of methods including differential centrifugation, filtration and fluorescence-activated cell sorting were developed to isolate ApoBDs. Furthermore, it has become increasingly clear that ApoBD formation can contribute to various biological processes such as apoptotic cell clearance and intercellular communication. Together, recent literature demonstrates that apoptotic cell disassembly and thus, ApoBD formation, is an important process downstream of apoptotic cell death. In this chapter, we discuss the current understandings of the molecular mechanisms involved in regulating apoptotic cell disassembly, techniques for ApoBD isolation, and the functional roles of ApoBDs in physiological and pathological settings.


Assuntos
Vesículas Extracelulares , Apoptose
5.
J Immunoassay Immunochem ; 43(5): 467-479, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35301912

RESUMO

Antigens derived from engulfed apoptotic bodies that are presented by dendritic cells can amplify Ag-specific T-cells. Accelerated co-cultured DC (acDC) strategy keeps lymphocytes in contact with differentiating DCs. Therefore, Ag-specific T-cell activation can occur during DC maturation. Our aim was to prepare DCs by acDC method and check the subsequent engulfment of the apoptotic body by acDC. We have proposed that this method could be feasible if we transfect the apoptotic bodies with the antigen. DCs were prepared using acDC method and their maturation markers were confirmed by flow cytometry. Ultraviolet was used for inducing apoptosis in the PBMCs and induction of apoptosis checked by propidium iodide and 7-aminoactinomycin D staining. Flow cytometry and immunohistochemistry were used for checking the uptake of apoptotic bodies by the DCs. The alloreactivity against apoptotic bodies was examined by enzyme-linked immunospot (ELISPOT) assay. Results showed that 40.4% of DCs could efficiently engulf the apoptotic bodies. The results indicated that acDC method is capable to isolate a high yield of DCs, and these cells could properly engulf the apoptotic bodies, more works should be performed to use this method for Ag discovery through delivering the Ag by apoptotic bodies into the DCs.


Assuntos
Células Dendríticas , Vesículas Extracelulares , Antígenos , Apoptose , Ativação Linfocitária , Linfócitos T
6.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232777

RESUMO

The intrinsic healing following tendon injury is ideal, in which tendon progenitor cells proliferate and migrate to the injury site to directly bridge or regenerate tendon tissue. However, the mechanism determining why and how those cells are attracted to the injury site for tendon healing is not understood. Since the tenocytes near the injury site go through apoptosis or necrosis following injury, we hypothesized that secretions from injured tenocytes might have biological effects on cell proliferation and migration to enhance tendon healing. Tenocyte apoptosis was induced by 24 h cell starvation. Apoptotic body-rich media (T-ABRM) and apoptotic body-depleted media (T-ABDM) were collected from culture media after centrifuging. Tenocytes and bone marrow-derived stem cells (BMDSCs) were isolated and cultured with the following four media: (1) T-ABRM, (2) T-ABDM, (3) GDF-5, or (4) basal medium with 2% fetal calf serum (FCS). The cell activities and functions were evaluated. Both T-ABRM and T-ABDM treatments significantly stimulated the cell proliferation, migration, and extracellular matrix synthesis for both tenocytes and BMDSCs compared to the control groups (GDF-5 and basal medium). However, cell proliferation, migration, and extracellular matrix production of T-ABRM-treated cells were significantly higher than the T-ABDM, which indicates the apoptotic bodies are critical for cell activities. Our study revealed the possible mechanism of the intrinsic healing of the tendon in which apoptotic bodies, in the process of apoptosis, following tendon injury promote tenocyte and stromal cell proliferation, migration, and production. Future studies should analyze the components of the apoptotic bodies that play this role, and, thus, the targeting of therapeutics can be developed.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismos dos Tendões , Proliferação de Células , Células Cultivadas , Meios de Cultura/farmacologia , Fator 5 de Diferenciação de Crescimento/farmacologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Soroalbumina Bovina/farmacologia , Traumatismos dos Tendões/terapia , Tenócitos
7.
Biochim Biophys Acta Rev Cancer ; 1868(2): 538-563, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29054476

RESUMO

Extracellular vesicles (EVs) have emerged as important players of cancer initiation and progression through cell-cell communication. They have been recognized as critical mediators of extracellular communications, which promote transformation, growth invasion, and drug-resistance of cancer cells. Interestingly, the secretion and uptake of EVs are regulated in a more controlled manner than previously anticipated. EVs are classified into three groups, (i) exosomes, (ii) microvesicles (MVs), and (iii) apoptotic bodies (ABs), based on their sizes and origins, and novel technologies to isolate and distinguish these EVs are evolving. The biologically functional molecules harbored in these EVs, including nucleic acids, lipids, and proteins, have been shown to induce key signaling pathways in both tumor and tumor microenvironment (TME) cells for exacerbating tumor development. While tumor cell-derived EVs are capable of reprogramming stromal cells to generate a proper tumor cell niche, stromal-derived EVs profoundly affect the growth, resistance, and stem cell properties of tumor cells. This review summarizes and discusses these reciprocal communications through EVs in different types of cancers. Further understanding of the pathophysiological roles of different EVs in tumor progression is expected to lead to the discovery of novel biomarkers in liquid biopsy and development of tumor specific therapeutics. This review will also discuss the translational aspects of EVs and therapeutic opportunities of utilizing EVs in different cancer types.


Assuntos
Vesículas Extracelulares/fisiologia , Neoplasias/etiologia , Animais , Biomarcadores , Comunicação Celular , Separação Celular , Exoma/fisiologia , Vesículas Extracelulares/química , Vesículas Extracelulares/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/análise , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transporte Proteico , Transdução de Sinais/fisiologia , Microambiente Tumoral
8.
Respir Res ; 20(1): 240, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666080

RESUMO

Extracellular vesicles (EVs) are cell-derived membranous vesicles secreted by cells into the extracellular space, which play a role in cell to cell communication. EVs are categorized into 3 groups depending on their size, surface marker, and method of release from the host cell. Recently, EVs have become of interest in the study of multiple disease etiologies and are believed to be potential biomarkers for many diseases. Multiple different methods have been developed to isolate EVs from different samples such as cell culture medium, serum, blood, and urine. Once isolated, EVs can be characterized by technology such as nanotracking analysis, dynamic light scattering, and nanoscale flow cytometry. In this review, we summarize the current methods of EV isolation, provide details into the three methods of EV characterization, and provide insight into which isolation approaches are most suitable for EV isolation from bronchoalveolar lavage fluid (BALF).


Assuntos
Líquido da Lavagem Broncoalveolar/citologia , Cromatografia em Gel/métodos , Vesículas Extracelulares/metabolismo , Citometria de Fluxo/métodos , Técnicas Analíticas Microfluídicas/métodos , Biomarcadores/metabolismo , Vesículas Extracelulares/patologia , Vesículas Extracelulares/ultraestrutura , Humanos , Imunoprecipitação/métodos , Ultracentrifugação/métodos
9.
Cell Mol Life Sci ; 74(4): 697-713, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27582126

RESUMO

Intercellular communication plays an important role in cancer initiation and progression through secretory molecules, including growth factors and cytokines. Recent advances have revealed that small membrane vesicles, termed extracellular vesicles (EVs), served as a regulatory agent in the intercellular communication of cancer. EVs enable the transfer of functional molecules, including proteins, mRNA and microRNAs (miRNAs), into recipient cells. Cancer cells utilize EVs to dictate the unique phenotype of surrounding cells, thereby promoting cancer progression. Against such "education" by cancer cells, non-tumoral cells suppress cancer initiation and progression via EVs. Therefore, researchers consider EVs to be important cues to clarify the molecular mechanisms of cancer biology. Understanding the functions of EVs in cancer progression is an important aspect of cancer biology that has not been previously elucidated. In this review, we summarize experimental data that indicate the pivotal roles of EVs in cancer progression.


Assuntos
Comunicação Celular , Exossomos/patologia , Vesículas Extracelulares/patologia , Neoplasias/patologia , Microambiente Tumoral , Animais , Progressão da Doença , Exossomos/imunologia , Exossomos/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Imunidade Celular , Neoplasias/imunologia , Neoplasias/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(12): E1433-42, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25713383

RESUMO

Extracellular vesicles (EVs), specifically exosomes and microvesicles (MVs), are presumed to play key roles in cell-cell communication via transfer of biomolecules between cells. The biogenesis of these two types of EVs differs as they originate from either the endosomal (exosomes) or plasma (MVs) membranes. To elucidate the primary means through which EVs mediate intercellular communication, we characterized their ability to encapsulate and deliver different types of macromolecules from transiently transfected cells. Both EV types encapsulated reporter proteins and mRNA but only MVs transferred the reporter function to recipient cells. De novo reporter protein expression in recipient cells resulted only from plasmid DNA (pDNA) after delivery via MVs. Reporter mRNA was delivered to recipient cells by both EV types, but was rapidly degraded without being translated. MVs also mediated delivery of functional pDNA encoding Cre recombinase in vivo to tissues in transgenic Cre-lox reporter mice. Within the parameters of this study, MVs delivered functional pDNA, but not RNA, whereas exosomes from the same source did not deliver functional nucleic acids. These results have significant implications for understanding the role of EVs in cellular communication and for development of EVs as delivery tools. Moreover, studies using EVs from transiently transfected cells may be confounded by a predominance of pDNA transfer.


Assuntos
DNA/química , Exossomos/química , Animais , Apoptose , Transporte Biológico/genética , Comunicação Celular , Membrana Celular/metabolismo , Citometria de Fluxo , Inativação Gênica , Genes Reporter/genética , Células HEK293 , Humanos , Integrases/metabolismo , Lipídeos/química , Substâncias Macromoleculares/química , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Microscopia Confocal , Microscopia de Fluorescência , Fosfatidilserinas/química , Plasmídeos , Polietilenoglicóis/química , RNA Mensageiro/metabolismo , Tetraspanina 30/química
11.
Int J Mol Sci ; 17(2): 170, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26861301

RESUMO

Intercellular communication was long thought to be regulated exclusively through direct contact between cells or via release of soluble molecules that transmit the signal by binding to a suitable receptor on the target cell, and/or via uptake into that cell. With the discovery of small secreted vesicular structures that contain complex cargo, both in their lumen and the lipid membrane that surrounds them, a new frontier of signal transduction was discovered. These "extracellular vesicles" (EV) were initially thought to be garbage bags through which the cell ejected its waste. Whilst this is a major function of one type of EV, i.e., apoptotic bodies, many EVs have intricate functions in intercellular communication and compound exchange; although their physiological roles are still ill-defined. Additionally, it is now becoming increasingly clear that EVs mediate disease progression and therefore studying EVs has ignited significant interests among researchers from various fields of life sciences. Consequently, the research effort into the pathogenic roles of EVs is significantly higher even though their protective roles are not well established. The "Focus on extracellular vesicles" series of reviews highlights the current state of the art regarding various topics in EV research, whilst this review serves as an introductory overview of EVs, their biogenesis and molecular composition.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Animais , Apoptose , Transporte Biológico , Biotecnologia , Fracionamento Celular/métodos , Exossomos/metabolismo , Humanos , Pesquisa , Transdução de Sinais
12.
Biomaterials ; 306: 122483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330742

RESUMO

Bromodomain-containing protein 4 (BRD4) is the most well-studied BET protein that is important for the innate immune response. We recently revealed that targeting BRD4 triggers apoptosis in tumor-associated macrophages, but its role in synovial macrophages and joint inflammation is largely unknown. Herein, we demonstrated that BRD4 was highly expressed in the iNOS-positive M1 macrophages in the human and mouse osteoarthritis (OA) synovium, and conditional knockout of BRD4 in the myeloid lineage using Lyz2-cre; BRD4flox/flox mice significantly abolished anterior cruciate ligament transection (ACLT)-induced M1 macrophage accumulation and synovial inflammation. Accordingly, we successfully constructed apoptotic body-inspired phosphatidylserine-containing nanoliposomes (PSLs) loaded with the BRD4 inhibitor JQ1 to regulate inflammatory macrophages. JQ1-loaded PSLs (JQ1@PSLs) exhibited a higher cellular uptake by macrophages than fibroblast-like synoviocytes (FLSs) in vitro and in vivo, as well as the reduction in proinflammatory M1 macrophage polarization. Intra-articular injections of JQ1@PSLs showed prolonged retention within the joint, and remarkably reduced synovial inflammation and joint pain via suppressing M1 polarization accompanied by reduced TRPA1 expression by targeted inhibition of BRD4 in the macrophages, thus attenuating cartilage degradation during OA development. The results show that BRD4-inhibiting JQ1@PSLs can targeted-modulate macrophage polarization, which opens a new avenue for efficient OA therapy via a "Trojan horse".


Assuntos
Osteoartrite , Fatores de Transcrição , Animais , Humanos , Camundongos , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Fatores de Transcrição/metabolismo
13.
Sci Bull (Beijing) ; 68(8): 826-837, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36973107

RESUMO

Endothelial cell (EC) injury plays a key role in the chronic wound process. A long-term hypoxic microenvironment hinders the vascularization of ECs, thus delaying wound healing. In this study, CX3CL1-functionalized apoptotic body nanovesicles (nABs) were constructed. The "Find-eat" strategy was implemented through a receptor-ligand combination to target ECs that highly express CX3CR1 in the hypoxic microenvironment, therefore amplifying the "Find-eat" signal and promoting angiogenesis. Apoptotic bodies (ABs) were obtained by chemically inducing apoptosis of adipose-derived stem cells (ADSCs), and then functionalized nABs containing deferoxamine (DFO-nABs) were obtained through a series of steps, including optimized hypotonic treatment, mild ultrasound, drug mixing and extrusion treatment. In vitro experiments showed that nABs had good biocompatibility and an effective "Find-eat" signal via CX3CL1/CX3CR1 to induce ECs in the hypoxic microenvironment, thereby promoting cell proliferation, cell migration, and tube formation. In vivo experiments showed that nABs could promote the rapid closure of wounds, release the "Find-eat" signal to target ECs and realize the sustained release of angiogenic drugs to promote new blood vessel formation in diabetic wounds. These receptor-functionalized nABs, which can target ECs by releasing dual signals and achieve the sustained release of angiogenic drugs, may provide a novel strategy for chronic diabetic wound healing.


Assuntos
Diabetes Mellitus , Células Endoteliais , Humanos , Preparações de Ação Retardada/farmacologia , Neovascularização Fisiológica , Neovascularização Patológica
14.
Genes Dis ; 10(3): 1114-1129, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37396516

RESUMO

Macrophages (Mφs) play a crucial role in the pathological progression of osteoarthritis (OA) by regulating inflammation and tissue repair. Decreasing pro-inflammatory M1-Mφs and increasing anti-inflammatory M2-Mφs can alleviate OA-related inflammation and promote cartilage repair. Apoptosis is a natural process associated with tissue repair. A large number of apoptotic bodies (ABs), a type of extracellular vesicle, are produced during apoptosis, and this is associated with a reduction in inflammation. However, the functions of apoptotic bodies remain largely unknown. In this study, we investigated the role of M2-Mφs-derived apoptotic bodies (M2-ABs) in regulating the M1/M2 balance of macrophages in a mouse model of OA. Our data show that M2-ABs can be targeted for uptake by M1-Mφs, and this reprograms M1-to-M2 phenotypes within 24 h. The M2-ABs significantly ameliorated the severity of OA, alleviated the M1-mediated pro-inflammatory environment, and inhibited chondrocyte apoptosis in mice. RNA-seq revealed that M2-ABs were enriched with miR-21-5p, a microRNA that is negatively correlated with articular cartilage degeneration. Inhibiting the function of miR-21-5p in M1-Mφs significantly reduced M2-ABs-guided M1-to-M2 reprogramming following in vitro cell transfection. Together, these results suggest that M2-derived apoptotic bodies can prevent articular cartilage damage and improve gait abnormalities in OA mice by reversing the inflammatory response caused by M1 macrophages. The mechanism underlying these findings may be related to miR-21-5p-regulated inhibition of inflammatory factors. The application of M2-ABs may represent a novel cell therapy, and could provide a valuable strategy for the treatment of OA and/or chronic inflammation.

15.
Int Immunopharmacol ; 125(Pt A): 111096, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871378

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) show great potential for immunomodulatory and anti-inflammatory treatments. Clinical trials have been performed for the treatment of Type 1 diabetes, graft-versus-host disease and organ transplantation, which offer a promise of MSCs as an immunomodulatory therapy. Nevertheless, their unstable efficacy and immunogenicity concerns present challenges to clinical translation. It has emerged that the MSC-derived secretome, which includes secreted proteins, exosomes, apoptotic bodies (ABs) and other macromolecules, may have similar therapeutic effects to parent MSCs. Among all of the components of the MSC-derived secretome, most interest thus far has been garnered by exosomes for their therapeutic potential. However, since MSCs were reported to undergo apoptosis after in vivo transplantation and release ABs, we speculated as to whether ABs have immunomodulatory effects. In this study, cytokine licensing was used to enhance the immunomodulatory potency of MSCs and ABs derived from licensed MSCs in vitro were isolated to explore their immunomodulatory effects as an effective non-viable cell therapy. RESULTS: IFN-γ and IFN-γ/TGF-ß1 licensing enhanced the immunomodulatory effect of MSCs on T cell proliferation. Further, TGF-ß1 and IFN-γ licensing strengthened the immunomodulatory effect of MSC on reducing the TNF-α and IL-1ß expression by M1 macrophage-like THP-1 cells. Additionally, we discovered the immunomodulatory effect mediated by MSC-derived apoptotic bodies. Licensing impacted the uptake of ABs by recipient immune cells and importantly altered their phenotypes. CONCLUSION: ABs derived from IFN-γ/TGF-ß1-licensed apoptotic MSCs significantly inhibited T cell proliferation, induced more regulatory T cells, and maintained immunomodulatory T cells but reduced pro-inflammatory T cells.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas , Medula Óssea , Imunomodulação , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo
16.
Heliyon ; 9(11): e20716, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37885720

RESUMO

Background: Intrauterine adhesions (IUAs) are a common illness of the uterine cavity. Endometrial fibrosis is the main pathological feature. In addition to a high recurrence rate, patients with severe IUAs have a low pregnancy rate. However, there are few effective treatments for IUAs. This study aims to confirm the influence of apoptotic bodies of bone marrow mesenchymal stem cells (BMSCs) on endometrial stromal cell fibrosis by mediating the Wnt/ß-catenin signaling pathway and to provide new insight for the clinical treatment of IUAs. Methods: Human endometrial stromal cells (HESCs) were used to establish an IUA cell model by treatment with TGF-ß1, and a rat IUA model was established by the double injury method. Apoptosis of BMSCs was detected by TUNEL assays, and cell morphology was observed by the CM-DiI tracer. The morphology of apoptotic vacuoles and apoptotic bodies (ABs) was detected by TEM. We used Western blotting to detect the expression of histone H3.3, histone H2B, C3b, cyclin D1, C1QC, α-SMA, COL1A1, COL5A2, FN, CTGF, Wnt2b, c-MYC, CK-18 and VIM. The expression levels of α-SMA, COL1A1, COL5A2, FN and CTGF were detected by RT‒qPCR. The expression levels of α-SMA, COL1A1, FN and CTGF were detected by immunofluorescence. Immunohistochemistry was used to detect the expression of TGF-ß, CK-18 and VIM. Flow cytometry, cell scratch assays, CCK-8 assays, and H & E and Masson staining were used to detect the cell cycle, cell migration, cell proliferation, and endometrial pathology, respectively. Results: We found that ultraviolet light (UV) irradiation induced apoptosis of BMSCs and increased the production of ABs. TGF-ß1 treatment can induce HESCs to form extracellular matrix (ECM), and aggravate cell fibrosis, and adding ABs or FH535, an inhibitor of the Wnt/ß-catenin signaling pathway, can inhibit TGF-ß1-induced HESC fibrosis. However, the inhibitory effect of ABs on TGF-ß1-induced fibrosis of HESCs was attenuated by the addition of LiCl. In the Wnt/ß-catenin signaling pathway, LiCl is an activator after coculture with TGF-ß1. In vivo, IUA-induced narrowing of the uterine cavity was accompanied by intrauterine adhesions, increased deposition of collagen fibers, upregulation of TGF-ß1, VIM, α-SMA, COL1A1 and COL5A2, and downregulation of CK-18. These changes in expression were reversed after treatment with ABs or FH535. When ABs and LiCl were added at the same time, the inhibitory effect of ABs on IUA fibrosis was weakened. Conclusion: BMSC-derived ABs inhibit the fibrosis of HESCs by inhibiting the Wnt/ß-catenin signaling pathway. These results provide a new direction for the clinical treatment of IUAs.

17.
Cell Rep Med ; 4(9): 101165, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37607544

RESUMO

The bone microenvironment promotes cancer cell proliferation and dissemination. During periodic bone remodeling, osteoclasts undergo apoptosis, producing large numbers of apoptotic bodies (ABs). However, the biological role of osteoclast-derived ABs, which are residents of the bone-tumor niche, remains largely unknown. Here, we discover that AB-null MRL/lpr mice show resistance to breast cancer cell implantation, with more CD8+ T cell infiltrations and a higher survival rate. We uncover that the membranous Siglec15 on osteoclast-derived ABs binds with sialylated Toll-like receptor 2 (TLR2) and blocks downstream co-stimulatory signaling, leading to the inhibition of naive CD8+ T cell activation. In addition, our study shows that treatment with Siglec15 neutralizing antibodies significantly reduces the incidence of secondary metastases and improves the survival rate of mice with advanced breast cancer bone metastasis. Our findings reveal the immunosuppressive function of osteoclast-derived ABs in the bone-tumor niche and demonstrate the potential of Siglec15 as a common target for anti-resorption and immunotherapy.


Assuntos
Vesículas Extracelulares , Melanoma , Animais , Camundongos , Linfócitos T CD8-Positivos , Camundongos Endogâmicos MRL lpr , Osteoclastos , Microambiente Tumoral , Melanoma Maligno Cutâneo
18.
Dev Cell ; 58(14): 1282-1298.e7, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37315563

RESUMO

Cell extrusion is a universal mode of cell removal from tissues, and it plays an important role in regulating cell numbers and eliminating unwanted cells. However, the underlying mechanisms of cell delamination from the cell layer are unclear. Here, we report a conserved execution mechanism of apoptotic cell extrusion. We found extracellular vesicle (EV) formation in extruding mammalian and Drosophila cells at a site opposite to the extrusion direction. Lipid-scramblase-mediated local exposure of phosphatidylserine is responsible for EV formation and is crucial for executing cell extrusion. Inhibition of this process disrupts prompt cell delamination and tissue homeostasis. Although the EV has hallmarks of an apoptotic body, its formation is governed by the mechanism of microvesicle formation. Experimental and mathematical modeling analysis illustrated that EV formation promotes neighboring cells' invasion. This study showed that membrane dynamics play a crucial role in cell exit by connecting the actions of the extruding cell and neighboring cells.


Assuntos
Vesículas Extracelulares , Fosfatidilserinas , Animais , Fosfatidilserinas/metabolismo , Apoptose/fisiologia , Drosophila/metabolismo , Endocitose , Vesículas Extracelulares/metabolismo , Mamíferos/metabolismo
19.
ACS Biomater Sci Eng ; 9(5): 2793-2805, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066871

RESUMO

This study fabricates a nanoparticle delivery system of gold nanoparticles-dextran nanoparticles loaded with hypoxia-activated paclitaxel dimeric prodrug nanoparticles (PTX2-NP) and photosensitizer chlorin e6/paclitaxel-nanoparticle/gold@N-(2-hydroxypropyl) (Ce6/PTX2-NP/G@NHs) and analyzed the possible molecular mechanism for enhancing the radiosensitivity of non-small cell lung cancer (NSCLC). Ce6/PTX2-NP/G@NHs were prepared by a coupling reaction and dextran inclusion, followed by characterization using spectroscopy techniques. The cellular uptake and cytotoxicity of Ce6/PTX2-NP/G@NHs were analyzed. Radiosensitizing effects of the nanoparticles were evaluated by determining the malignant phenotypes and reactive oxygen species production of A549 cells and PI3K/AKT pathway-related proteins under 685 nm laser irradiation. A549 tumor-bearing nude mice were modeled to further confirm the radiosensitizing effect. Ce6/PTX2-NP/G@NHs were effectively internalized by A549 cells, producing cytotoxicity under laser irradiation. Ce6/PTX2-NP/G@NHs reduced cell viability, clonogenic potential, migration, and invasion along with reactive oxygen species (ROS) production while promoting apoptosis in A549 cells under laser irradiation. By inhibiting the PI3K/AKT pathway, Ce6/PTX2-NP/G@NHs increased the sensitivity of A549 cells to radiotherapy where apoptotic body (ApoBD)-mediated neighboring effects also played a key role. Ce6/PTX2-NP/G@NHs accumulated in tumor sites of nude mice and enhanced the radiosensitivity of NSCLC. Ce6/PTX2-NP/G@NHs showed no obvious toxicity or side effects in vivo. Collectively, the new Ce6/PTX2-NP/G@NHs nanoparticle delivery system can enhance the radiosensitivity of NSCLC via the promotion of ApoBD-mediated neighboring effects and inactivation of the PI3K/AKT pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Nanopartículas Metálicas , Fotoquimioterapia , Radiossensibilizantes , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fotoquimioterapia/métodos , Camundongos Nus , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Dextranos , Ouro , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Nanopartículas Metálicas/uso terapêutico , Radiossensibilizantes/farmacologia , Paclitaxel/farmacologia , Tolerância a Radiação , Vesículas Extracelulares/metabolismo
20.
Methods Mol Biol ; 2504: 199-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35467288

RESUMO

Extracellular vesicles (EVs), comprising exosomes, ectosomes, and apoptotic bodies, are an important component of molecular cell-to-cell communication, and are critically involved in the pathophysiology of various diseases, including tumors. In order to study the interaction of tumor cell-derived EVs with their target cells and to investigate their biological functions in comparison to other tumor cell-released factors, efficient isolation of EVs from cultured tumor cells, as well as fluorescent labeling of these EVs, is often necessary. In addition, EVs and EV-like particles are emerging as versatile vehicles for the delivery of therapeutic substances. Here, we describe an easy size exclusion chromatography-based method to isolate EVs from the mouse melanoma cell line B16F10 that yields highly enriched EV samples for subsequent applications such as molecular and functional studies. Our protocol also includes an optional labeling step with the lipophilic dye DiD, which allows tracking of EV uptake by recipient cells in vitro and in vivo.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Animais , Cromatografia em Gel , Vesículas Extracelulares/metabolismo , Camundongos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa