Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 204(3): 613-624, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400948

RESUMO

When wintering at different sites, individuals from the same breeding population can experience different conditions, with costs and benefits that may have implications throughout their lifetime. Using a dataset from a longitudinal study on Eurasian Spoonbills from southern France, we explored whether survival rate varied among individuals using different wintering sites. In the last 13 years, more than 3000 spoonbills have been ringed as chicks in Camargue. These birds winter in five main regions that vary in both migratory flyway (East Atlantic vs. Central European) and migration distance (long-distance vs. short-distance vs. resident). We applied Cormack-Jolly-Seber models and found evidence for apparent survival to correlate with migration distance, but not with flyway. During the interval between the first winter sighting and the next breeding period, long-distance migrants had the lowest survival, independently of the flyway taken. Additionally, as they age, spoonbills seem to better cope with migratory challenges and wintering conditions as no differences in apparent survival among wintering strategies were detected during subsequent years. As dispersal to other breeding colonies was rarely observed, the lower apparent survival during this period is likely to be partly driven by lower true survival. This supports the potential role of crossing of natural barriers and degradation of wintering sites in causing higher mortality rates as recorded for a variety of long-distance migrants. Our work confirms variation in demographic parameters across winter distribution ranges and reinforces the importance of longitudinal studies to better understand the complex demographics of migratory species.


Assuntos
Migração Animal , Aves , Humanos , Animais , Estudos Longitudinais , França , Estações do Ano
2.
Ecol Monogr ; 93(1): e1559, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37035418

RESUMO

Understanding the demographic drivers of range contractions is important for predicting species' responses to climate change; however, few studies have examined the effects of climate change on survival and recruitment across species' ranges. We show that climate change can drive trailing edge range contractions through the effects on apparent survival, and potentially recruitment, in a migratory songbird. We assessed the demographic drivers of trailing edge range contractions using a long-term demography dataset for the black-throated blue warbler (Setophaga caerulescens) collected across elevational climate gradients at the trailing edge and core of the breeding range. We used a Bayesian hierarchical model to estimate the effect of climate change on apparent survival and recruitment and to forecast population viability at study plots through 2040. The trailing edge population at the low-elevation plot became locally extinct by 2017. The local population at the mid-elevation plot at the trailing edge gradually declined and is predicted to become extirpated by 2040. Population declines were associated with warming temperatures at the mid-elevation plot, although results were more equivocal at the low-elevation plot where we had fewer years of data. Population density was stable or increasing at the range core, although warming temperatures are predicted to cause population declines by 2040 at the low-elevation plot. This result suggests that even populations within the geographic core of the range are vulnerable to climate change. The demographic drivers of local population declines varied between study plots, but warming temperatures were frequently associated with declining rates of population growth and apparent survival. Declining apparent survival in our study system is likely to be associated with increased adult emigration away from poor-quality habitats. Our results suggest that demographic responses to warming temperatures are complex and dependent on local conditions and geographic range position, but spatial variation in population declines is consistent with the climate-mediated range shift hypothesis. Local populations of black-throated blue warblers near the warm-edge range boundary at low latitudes and low elevations are likely to be the most vulnerable to climate change, potentially leading to local extirpation and range contractions.

3.
J Anim Ecol ; 92(10): 2109-2118, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37691322

RESUMO

Loss and/or deterioration of refuelling habitats have caused population declines in many migratory bird species but whether this results from unequal mortality among individuals varying in migration traits remains to be shown. Based on 13 years of body mass and size data of great knots (Calidris tenuirostris) at a stopover site of the Yellow Sea, combined with resightings of individuals marked at this stopover site along the East Asian-Australasian Flyway, we assessed year to year changes in annual apparent survival rates, and how apparent survival differed between migration phenotypes (i.e. migration timing and fuel stores). The measurements occurred over a period of habitat loss and/or deterioration in this flyway. We found that the annual apparent survival rates of great knots rapidly declined from 2006 to 2018, late-arriving individuals with small fuel stores exhibiting the lowest apparent survival rate. There was an advancement in mean arrival date and an increase in the mean fuel load of stopping birds over the study period. Our results suggest that late-arriving individuals with small fuel loads were selected against. Thus, habitat loss and/or deterioration at staging sites may cause changes in the composition of migratory phenotypes at the population-level.


Assuntos
Migração Animal , Charadriiformes , Animais , Aves , Ecossistema
4.
J Anim Ecol ; 90(5): 1328-1340, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33660289

RESUMO

Selection for crypsis has been recognized as an important ecological driver of animal colouration, whereas the relative importance of thermoregulation is more contentious with mixed empirical support. A potential thermal advantage of darker individuals has been observed in a wide range of animal species. Arctic animals that exhibit colour polymorphisms and undergo seasonal colour moults are interesting study subjects for testing the two alternative hypotheses: demographic performance of different colour morphs might be differentially affected by snow cover with a cryptic advantage for lighter morphs, or conversely by winter temperature with a thermal advantage for darker morphs. In this study, we explored whether camouflage and thermoregulation might explain differences in reproduction and survival between the white and blue colour morphs of the Arctic fox Vulpes lagopus under natural conditions. Juvenile and adult survival, breeding propensity and litter size were measured for 798 captive-bred and released or wild-born Arctic foxes monitored during an 11-year period (2007-2017) in two subpopulations in south-central Norway. We investigated the proportion of the two colour morphs and compared their demographic performance in relation to spatial variation in duration of snow cover, onset of snow season and winter temperatures. After population re-establishment, a higher proportion of blue individuals was observed among wild-born Arctic foxes compared to the proportion of blue foxes released from the captive population. Our field study provides the first evidence for an effect of colour morph on the reproductive performance of Arctic foxes under natural conditions, with a higher breeding propensity of the blue morph compared to the white one. Performance of the two colour morphs was not differentially affected by the climatic variables, except for juvenile survival. Blue morph juveniles showed a tendency for higher survival under colder winter temperatures but lower survival under warmer temperatures compared to white morph juveniles. Overall, our findings do not consistently support predictions of the camouflage or the thermoregulation hypotheses. The higher success of blue foxes suggests an advantage of the dark morph not directly related to disruptive selection by crypsis or thermoregulation. Our results rather point to physiological adaptations and behavioural traits not necessarily connected to thermoregulation, such as stress response, immune function, sexual behaviour and aggressiveness. Our findings highlight the need to explore the potential role of genetic linkage or pleiotropy in influencing the fitness of white and blue Arctic foxes as well as other species with colour polymorphisms.


Assuntos
Pigmentação , Melhoramento Vegetal , Animais , Regiões Árticas , Regulação da Temperatura Corporal , Raposas , Noruega
5.
J Anim Ecol ; 89(3): 674-677, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32141625

RESUMO

In Focus: Reneerkens, J., Versluijs, T. S. L., Piersma, T., Alves, J. A., Boorman, M., Corse, C., … Lok, T. (2020). Low fitness at low latitudes: wintering in the tropics increases migratory delays and mortality rates in an Arctic breeding shorebird. Journal of Animal Ecology, 89, 691-703. A central question in migratory ecology has been to understand the fitness consequences of individual variation in migration distance among different species and populations. Reneerkens et al. (2020) investigated the demographic consequences of long-distance migration for Sanderlings Calidris alba, an Arctic-breeding species of sandpiper. Their study population has a remarkable geographic distribution with a breeding range that is concentrated in northeast Greenland and Ellesmere Island, Canada but a nonbreeding range that extends across 85° of latitude from Scotland to Namibia. The authors report on unexpected patterns of latitudinal variation in three demographic parameters: timing of passage on northward migration, probability of juvenile migration and apparent survival of adults. Sanderlings travelling 1,800-2,800 km to settle at north temperate sites during the nonbreeding season had earlier passage dates, and also higher probabilities of migration and apparent survival. In contrast, birds travelling 6,000-7,800 km to equatorial sites experienced later passage dates, delayed maturity and lower apparent survival. However, if Sanderlings migrated even farther and flew over 11,000 km to nonbreeding sites in Namibia, then their performance was restored to early passage dates and higher survival. Movement tracks from birds tagged with geolocators showed that birds wintering in Namibia make nonstop flights of 7,500 km that bypass West Africa during northward migration. Thus, all lines of evidence suggest that Sanderlings face adversity when spending the nonbreeding season at equatorial latitudes. Moreover, the central finding that components of fitness can have nonlinear relationships with migration distance is a novel discovery that leads to many additional questions. The new findings have broader implications for theoretical models of migration, and for understanding how different patterns of movements may arise or be maintained in migratory species.


Assuntos
Migração Animal , Animais , Regiões Árticas , Canadá , Groenlândia , Namíbia , Escócia , Estações do Ano
6.
J Hered ; 111(7): 628-639, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33277658

RESUMO

Heterozygosity-fitness correlations (HFCs) have been used to monitor the effects of inbreeding in threatened populations. HFCs can also be useful to investigate the potential effects of inbreeding in isolated relict populations of long-term persistence and to better understand the role of inbreeding and outbreeding as drivers of changes in genetic diversity. We studied a continental island population of thorn-tailed rayadito (Aphrastura spinicauda) inhabiting the relict forest of Fray Jorge National Park, north-central Chile. This population has experienced a long-term, gradual process of isolation since the end of the Tertiary. Using 10 years of field data in combination with molecular techniques, we tested for HFCs to assess the importance of inbreeding depression. If inbreeding depression is important, we predict a positive relationship between individual heterozygosity and fitness-related traits. We genotyped 183 individuals at 12 polymorphic microsatellite loci and used 7 measures of reproductive success and estimates of apparent survival to calculate HFCs. We found weak to moderate statistical support (P-values between 0.05 and 0.01) for a linear effect of female multi-locus heterozygosity (MLH) on clutch size and nonlinear effects on laying date and fledging success. While more heterozygous females laid smaller clutches, nonlinear effects indicated that females with intermediate values of MLH started laying earlier and had higher fledging success. We found no evidence for effects of MLH on annual fecundity or on apparent survival. Our results along with the long-term demographic stability of the study population contradict the hypothesis that inbreeding depression occurs in this population.


Assuntos
Aves/genética , Aptidão Genética , Genética Populacional , Heterozigoto , Animais , Aves/classificação , Chile , Variação Genética , Endogamia , Ilhas , Característica Quantitativa Herdável , Reprodução
7.
Ecology ; 98(6): 1574-1582, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28294305

RESUMO

Ecological disturbances shape and maintain natural communities, but climate change and human land use can alter disturbance regimes and affect population persistence and vital rates in unpredictable ways. Species inhabiting landscapes shaped by wildfire have evolved mechanisms allowing them to persist under this dynamic disturbance type, which creates habitats of varying quality for these species. We utilized data from a 26-yr demographic study of northern spotted owls to analyze the influence of wildfire on apparent survival and recruitment rates. Wildfires occurred across different years and affected different spotted owl territories, which allowed us to implement a retrospective Before-After-Control-Impact (BACI) analysis and model the potential effect of wildfire extent and severity. Our results indicated that mixed-severity fires that burned at predominantly low-severity had little effect on survival and recruitment while fires characterized by more medium to high burn severities negatively affected spotted owl survival, with varying effects on recruitment. Reduced survival and increased recruitment rates on some territories affected by medium to high severity fires suggested that post-fire habitat quality was reduced resulting in territories that were marginally capable of supporting owls. We hypothesize these territories may have represented "sinks" that were supported by nearby "source" territories in a spatially heterogeneous landscape created by the mixed-severity fire regime of the region.


Assuntos
Florestas , Incêndios Florestais , Animais , Ecossistema , Incêndios , Dinâmica Populacional , Estudos Retrospectivos
8.
J Fish Biol ; 91(6): 1683-1698, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29094764

RESUMO

This study examined the efficacy of marking wild populations of lampreys with visible implant elastomer (VIE) for 6-18 months to examine ammocoete movements using Cormack-Jolly-Seber (CJS) open-population models. These methods were tested on two lamprey populations in different river systems. American brook lamprey Lethenteron appendix at Dyke Creek apparent survival (φ) was high in the summer and winter (c. 0·7), but declined after flow events in the spring and autumn. Sea lamprey Petromyzon marinus at Oquaga Creek φ in the top-ranked models varied with stream location and time. Estimates of φ were similar to Dyke Creek during the summer (c. 0·7), but declined after flow events and remained low (c. 0·1) in winter. Open-population models support current understanding of ammocoete movement, i.e. dispersal is driven by high-flow events at certain times of the year. The present study provides a framework to study ammocoetes with VIE.


Assuntos
Lampreias/fisiologia , Petromyzon/fisiologia , Animais , Comportamento Animal , Elastômeros , Dinâmica Populacional , Rios , Estações do Ano
9.
Conserv Biol ; 30(5): 1102-11, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26918820

RESUMO

Population abundance estimates are important for management but can be challenging to determine in low-density, wide-ranging, and endangered species, such as Sonoran pronghorn (Antilocapra americana sonoriensis). The Sonoran pronghorn population has been increasing; however, population estimates are currently derived from a biennial aerial count that does not provide survival or recruitment estimates. We identified individuals through noninvasively collected fecal DNA and used robust-design capture-recapture to estimate abundance and survival for Sonoran pronghorn in the United States from 2013 to 2014. In 2014 we generated separate population estimates for pronghorn gathered near 13 different artificial water holes and for pronghorn not near water holes. The population using artificial water holes had 116 (95% CI 102-131) and 121 individuals (95% CI 112-132) in 2013 and 2014, respectively. For all locations, we estimated there were 144 individuals (95% CI 132-157). Adults had higher annual survival probabilities (0.83, 95% CI 0.69-0.92) than fawns (0.41, 95% CI 0.21-0.65). Our use of targeted noninvasive genetic sampling and capture-recapture with Sonoran pronghorn fecal DNA was an effective method for monitoring a large proportion of the population. Our results provided the first survival estimates for this population in over 2 decades and precise estimates of the population using artificial water holes. Our method could be used for targeted sampling of broadly distributed species in other systems, such as in African savanna ecosystems, where many species congregate at watering sites.


Assuntos
Conservação dos Recursos Naturais , DNA/análise , Ruminantes , Animais , Ecossistema , Fezes , Dinâmica Populacional
10.
Ecol Evol ; 14(3): e11096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435011

RESUMO

Understanding dispersal is central to interpreting the effects of climate change, habitat loss and habitat fragmentation, and species invasions. Prior to dispersal, animals may gather information about the surrounding landscape via forays, or systematic, short-duration looping movements away from and back to the original location. Despite theory emphasizing that forays can be beneficial for dispersing organisms and that such behaviors are predicted to be common, relatively little is known about forays in wild populations. Theory predicts that individuals that use forays may delay dispersal and such behaviors should increase survival, yet empirical tests of these predictions remain scarce. We tested these predictions in a natural system using the critically endangered snail kite (Rostrhaumus sociabilis), a wetland-dependent raptor. We GPS tracked 104 snail kites from fledging through emigration from the natal site across their breeding range to understand the demographic consequences of movement. We found that forays were common (82.7% of individuals tracked), and natal habitat played an important role in the initiation, execution, and outcome of foray behavior. The effect of foraying on survival was indirect, where forayers emigrated later than non-forayers, and individuals that emigrated later had the highest survival. Poor hydrological conditions in the natal environment were especially important for eliciting forays. Finally, females responded more strongly to natal hydrology than males, making more forays and significantly longer, more distant trips. These results emphasize the fundamental role of natal habitat for determining behavioral patterns, strengthen links between individual movement decisions and their demographic consequences, and provide an important behavioral focal point for interpreting movement tracks that would not otherwise be captured by conventional movement models.

11.
Ecol Evol ; 13(1): e9667, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699575

RESUMO

The Prairie Pothole Region of central Canada supports a diverse community of breeding waterbirds, but many species have declining populations and the demographic mechanisms driving the declines remain unknown. We conducted a 7-year field study during 1995-2001 to investigate the demographic performance of Marbled Godwits (Limosa fedoa) and Willets (Tringa semipalmata) breeding in managed wetlands near Brooks, Alberta. Mark-recapture analyses based on Cormack-Jolly-Seber models revealed that the annual rates of apparent survival for Marbled Godwits ( ϕ ^  = 0.953 ± 0.012SE) and Willets ( ϕ ^  = 0.861 ± 0.015SE) are among the highest rates of survivorship reported for any breeding or nonbreeding population of large-bodied shorebirds. Our estimates of life expectancy for males were comparable to longevity records in godwits (17.3 years ±5.8SE vs. 25-29+ years) and willets (7.7 ± 1.5SE vs. 10+ years). The two species both showed strong breeding site fidelity but differed in rates of mate fidelity. Pairs that reunited and males that switched mates usually nested <300 m from their previous nests, whereas females that switched mates usually moved longer distances >1.1-1.5 km. Returning pairs usually reunited in godwits (85%) but not in willets (28%), possibly because of species differences in adult survival or patterns of migration. Baseline estimates of annual survival for banded-only birds will be useful for evaluating the potential effects of new tracking tags or the environmental changes that have occurred during the past 20 years. Conservation strategies for large-bodied shorebirds should be focused on reduction of exposure to anthropogenic mortality because low rates of natural mortality suggest that losses to collisions at breeding sites or harvest at nonbreeding areas are likely to cause additive mortality.

12.
Evolution ; 77(4): 959-970, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36715204

RESUMO

Hybridization is a common process that has broadly impacted the evolution of multicellular eukaryotes; however, how ecological factors influence this process remains poorly understood. Here, we report the findings of a 3-year recapture study of the Bryant's woodrat (Neotoma bryanti) and desert woodrat (Neotoma lepida), two species that hybridize within a creosote bush (Larrea tridentata) shrubland in Whitewater, CA, USA. We used a genotype-by-sequencing approach to characterize the ancestry distribution of individuals across this hybrid zone coupled with Cormack-Jolly-Seber modeling to describe demography. We identified a high frequency of hybridization at this site with ~40% of individuals possessing admixed ancestry, which is the result of multigenerational backcrossing and advanced hybrid-hybrid crossing. F1, F2, and advanced generation hybrids had apparent survival rates similar to parental N. bryanti, while parental and backcross N. lepida had lower apparent survival rates and were far less abundant. Compared to bimodal hybrid zones where hybrids are often rare and selected against, we find that hybrids at Whitewater are common and have comparable survival to the dominant parental species, N. bryanti. The frequency of hybridization at Whitewater is therefore likely limited by the abundance of the less common parental species, N. lepida, rather than selection against hybrids.


Assuntos
Hibridização Genética , Sigmodontinae , Humanos , Animais , Sigmodontinae/genética , Hibridização de Ácido Nucleico
13.
Animals (Basel) ; 13(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003146

RESUMO

Food availability shapes demographic parameters and population dynamics. Certain species have adapted to predictable anthropogenic food resources like landfills. However, abrupt shifts in food availability can negatively impact such populations. While changes in survival are expected, the age-related effects remain poorly understood, particularly in long-lived scavenger species. We investigated the age-specific demographic response of a Griffon vulture (Gyps fulvus) population to a reduction in organic matter in a landfill and analyzed apparent survival and the probability of transience after initial capture using a Bayesian Cormack-Jolly-Seber model on data from 2012-2022. The proportion of transients among newly captured immatures and adults increased after the reduction in food. Juvenile apparent survival declined, increased in immature residents, and decreased in adult residents. These results suggest that there was a greater likelihood of permanent emigration due to intensified intraspecific competition following the reduction in food. Interestingly, resident immatures showed the opposite trend, suggesting the persistence of high-quality individuals despite the food scarcity. Although the reasons behind the reduced apparent survival of resident adults in the final four years of the study remain unclear, non-natural mortality potentially plays a part. In Europe landfill closure regulations are being implemented and pose a threat to avian scavenger populations, which underlines the need for research on food scarcity scenarios and proper conservation measures.

14.
Mov Ecol ; 10(1): 58, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482483

RESUMO

BACKGROUND: To understand life-history strategies in migratory bird species, we should focus on migration behaviour and possible carry-over effects on both population and individual level. Tracking devices are useful tools to directly investigate migration behaviour. With increased use of tracking devices, questions arise towards animal welfare and possible negative effects of logger on birds. Several studies were conducted to address this question in birds that were tagged and tracked for one complete non-breeding season including migration but with mixed results. To detect individual-based decisions regarding migration strategy, we need to track the same individuals several times. So far, there are no studies investigating effects of repeatedly tagging on reproduction and life-history traits in individual migratory birds, especially in small birds. METHODS: We used long-term data of 85 tagged common swifts (Apus apus), a long-distance migratory bird, of a breeding colony in Germany to test whether carrying a geolocator or GPS logger once or repeatedly during non-breeding season affected return rate, apparent survival, and parameters determining reproductive success. Additionally, we checked for individual differences in arrival date and breeding parameters when the same individuals were tagged and when they were not tagged in different years. Further, we calculated the individual repeatability in arrival at the breeding colony and date of egg laying in repeatedly tagged swifts. RESULTS: Once and repeatedly tagged birds returned to the colony at a similar rate as non-logger birds and arrived earlier than non-logger birds. We found no effect of logger-type on return rate in logger birds. We detected no differences in apparent survival, time lag to clutch initiation, date of clutch initiation, clutch size, number of chicks and fledglings between logger and non-logger birds. We found neither an effect of loggers nor of logger-types on the arrival date and breeding parameter on individual-level. Arrival date was highly repeatable and date of clutch initiation was moderately repeatable within repeatedly tagged individuals.

15.
Ecol Evol ; 12(4): e8833, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35475177

RESUMO

Age- and sex-specific survival estimates are crucial to understanding important life history characteristics, and variation in these estimates can be a key driver of population dynamics. When estimating survival using Cormack-Jolly-Seber (CJS) models, emigration is typically unknown but confounded with apparent survival. Consequently, especially for populations or age classes with high dispersal rates, apparent survival estimates are often biased low and temporal patterns in survival might be masked when site fidelity varies temporally. We used 9 years of annual mark-recapture data to estimate age-, sex-, and time-specific apparent survival of Humboldt's flying squirrels (Glaucomys oregonensis) and Townsend's chipmunks (Neotamias townsendii). For Humboldt's flying squirrels, these estimates support a small body of research investigating potential variation in survival among age and sex classes, but age- and sex-specific survival has not been evaluated for Townsend's chipmunks. We also quantified the effects of age- and sex-specific emigration on confounded estimates of apparent survival. Our estimates of juvenile flying squirrel survival were high relative to other small mammal species and estimates for both species were variable among years. We found survival differed moderately among age and sex classes for Humboldt's flying squirrels, but little among age and sex classes for Townsend's chipmunks, and that the degree to which emigration confounded apparent survival estimates varied substantially among years. Our results demonstrate that emigration can influence commonly used estimates of apparent survival. Unadjusted estimates confounded the interpretation of differences in survival between age and sex classes and masked potential temporal patterns in survival because the magnitude of adjustment varied among years. We conclude that apparent survival estimators are robust during some time periods; however, when emigration rates vary in time, the effects of emigration should be carefully considered and accounted for.

16.
Ecol Evol ; 11(23): 17289-17306, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938508

RESUMO

This study investigates survival and abundance of killer whales (Orcinus orca) in Norway in 1988-2019 using capture-recapture models of photo-identification data. We merged two datasets collected in a restricted fjord system in 1988-2008 (Period 1) with a third, collected after their preferred herring prey shifted its wintering grounds to more exposed coastal waters in 2012-2019 (Period 2), and investigated any differences between these two periods. The resulting dataset, spanning 32 years, comprised 3284 captures of 1236 whales, including 148 individuals seen in both periods. The best-supported models of survival included the effects of sex and time period, and the presence of transients (whales seen only once). Period 2 had a much larger percentage of transients compared to Period 1 (mean = 30% vs. 5%) and the identification of two groups of whales with different residency patterns revealed heterogeneity in recapture probabilities. This caused estimates of survival rates to be biased downward (females: 0.955 ± 0.027 SE, males: 0.864 ± 0.038 SE) compared to Period 1 (females: 0.998 ± 0.002 SE, males: 0.985 ± 0.009 SE). Accounting for this heterogeneity resulted in estimates of apparent survival close to unity for regularly seen whales in Period 2. A robust design model for Period 2 further supported random temporary emigration at an estimated annual probability of 0.148 (± 0.095 SE). This same model estimated a peak in annual abundance in 2015 at 1061 individuals (95% CI 999-1127), compared to a maximum of 731 (95% CI 505-1059) previously estimated in Period 1, and dropped to 513 (95% CI 488-540) in 2018. Our results indicate variations in the proportion of killer whales present of an undefined population (or populations) in a larger geographical region. Killer whales have adjusted their distribution to shifts in key prey resources, indicating potential to adapt to rapidly changing marine ecosystems.

17.
Ecology ; 102(1): e03223, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33048352

RESUMO

Climate change and habitat degradation are amongst the two greatest threats to biodiversity. Together, they can interact to imperil species. However, how climate change and land-use change jointly affect the demographic vital rates that underpin population viability remains unknown. Here, using long-term data on birds from the increasingly degraded and rapidly warming Himalayas, we show that survival trends over time are linked to species' elevational ranges in primary, but not in selectively logged forest. In primary forest, populations at their cold-edge elevational range limit show increases in survival rates over time, whereas those at their warm-edge elevational range limit suffer survival declines. This pattern is consistent with species tracking favorable climatic conditions over time, leading to improved demographic outcomes at progressively higher elevations with climate change, which in turn lead to upslope range shifts. In logged forest, however, survival rates remain relatively constant over time. This suggests that, in response to climate change in the long term, individuals of the same species can maintain demographic vital rates in higher-elevation primary forest, but not in logged forest. This is the first demonstration of how two of the most disruptive anthropogenic influences on biodiversity interact to threaten survivorship in natural populations. Ignoring interactions between climate change and land-use change can potentially undermine accurate forecasting of the future of species in an increasingly warm and degraded world. Importantly, large tracts of well-protected primary forests across Earth's tropical elevational gradients may be essential to enable tropical montane species to persist in the face of climate change.


Assuntos
Mudança Climática , Clima Tropical , Animais , Biodiversidade , Aves , Demografia , Ecossistema , Florestas , Humanos
18.
Ecol Evol ; 4(11): 2165-77, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25360258

RESUMO

Dynamic N-mixture models have been recently developed to estimate demographic parameters of unmarked individuals while accounting for imperfect detection. We propose an application of the Dail and Madsen (2011: Biometrics, 67, 577-587) dynamic N-mixture model in a manipulative experiment using a before-after control-impact design (BACI). Specifically, we tested the hypothesis of cavity limitation of a cavity specialist species, the northern flying squirrel, using nest box supplementation on half of 56 trapping sites. Our main purpose was to evaluate the impact of an increase in cavity availability on flying squirrel population dynamics in deciduous stands in northwestern Québec with the dynamic N-mixture model. We compared abundance estimates from this recent approach with those from classic capture-mark-recapture models and generalized linear models. We compared apparent survival estimates with those from Cormack-Jolly-Seber (CJS) models. Average recruitment rate was 6 individuals per site after 4 years. Nevertheless, we found no effect of cavity supplementation on apparent survival and recruitment rates of flying squirrels. Contrary to our expectations, initial abundance was not affected by conifer basal area (food availability) and was negatively affected by snag basal area (cavity availability). Northern flying squirrel population dynamics are not influenced by cavity availability at our deciduous sites. Consequently, we suggest that this species should not be considered an indicator of old forest attributes in our study area, especially in view of apparent wide population fluctuations across years. Abundance estimates from N-mixture models were similar to those from capture-mark-recapture models, although the latter had greater precision. Generalized linear mixed models produced lower abundance estimates, but revealed the same relationship between abundance and snag basal area. Apparent survival estimates from N-mixture models were higher and less precise than those from CJS models. However, N-mixture models can be particularly useful to evaluate management effects on animal populations, especially for species that are difficult to detect in situations where individuals cannot be uniquely identified. They also allow investigating the effects of covariates at the site level, when low recapture rates would require restricting classic CMR analyses to a subset of sites with the most captures.

19.
Ecol Evol ; 3(3): 523-35, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23532172

RESUMO

Changes in snow and ice conditions are some of the most distinctive impacts of global warming in cold temperate and Arctic regions, altering the environment during a critical period for survival for most animals. Laboratories studies have suggested that reduced ice cover may reduce the survival of stream dwelling fishes in Northern environments. This, however, has not been empirically investigated in natural populations in large rivers. Here, we examine how the winter survival of juvenile Atlantic salmon in a large natural river, the River Alta (Norway, 70°N), is affected by the presence or absence of surface ice. Apparent survival rates for size classes corresponding to parr and presmolts were estimated using capture-mark-recapture and Cormack-Jolly-Seber models for an ice-covered and an ice-free site. Apparent survival (Φ) in the ice-covered site was greater than in the ice-free site, but did not depend on size class (0.64 for both parr and presmolt). In contrast, apparent survival in the ice-free site was lower for larger individuals (0.33) than smaller individuals (0.45). The over-winter decline in storage energy was greater for the ice-free site than the ice-covered site, suggesting that environmental conditions in the ice-free site caused a strong depletion in energy reserves likely affecting survival. Our findings highlight the importance of surface ice for the winter survival of juvenile fish, thus, underpinning that climate change, by reducing ice cover, may have a negative effect on the survival of fish adapted to ice-covered habitats during winter.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa