RESUMO
Watercore is a common physiological disease of Rosaceae plants, such as apples (Malus domestica), usually occurring during fruit ripening. Apple fruit with watercore symptoms is prone to browning and rotting, thus losing commercial viability. Sorbitol and calcium ions are considered key factors affecting watercore occurrence in apples. However, the mechanism by which they affect the occurrence of watercore remains unclear. Here, we identified that the transcription factor MdWRKY9 directly binds to the promoter of MdSOT2, positively regulates the transcription of MdSOT2, increases sorbitol content in fruit, and promotes watercore occurrence. Additionally, MdCRF4 can directly bind to MdWRKY9 and MdSOT2 promoters, positively regulating their expression. Since calcium ions can induce the ubiquitination and degradation of the transcription factor MdCRF4, they can inhibit the transcription of MdWRKY9 and MdSOT2 by degrading MdCRF4, thereby reducing the sorbitol content in fruit and inhibiting the occurrence of fruit watercore disease. Our data sheds light on how calcium ions mitigate watercore in fruit, providing molecular-level insights to enhance fruit quality artificially.
Assuntos
Cálcio , Frutas , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Sorbitol , Fatores de Transcrição , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cálcio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Sorbitol/metabolismo , Regiões Promotoras Genéticas/genéticaRESUMO
Fruit colour is a critical determinant for the appearance quality and commercial value of apple fruits. Viroid-induced dapple symptom severely affects the fruit coloration, however, the underlying mechanism remains unknown. In this study, we identified an apple dimple fruit viroid (ADFVd)-derived small interfering RNA, named vsiR693, which targeted the mRNA coding for a bHLH transcription factor MdPIF1 (PHYTOCHROME-INTERACTING FACTOR 1) to regulate anthocyanin biosynthesis in apple. 5' RLM-RACE and artificial microRNA transient expression system proved that vsiR693 directly targeted the mRNA of MdPIF1 for cleavage. MdPIF1 positively regulated anthocyanin biosynthesis in both apple calli and fruits, and it directly bound to G-box element in the promoter of MdPAL and MdF3H, two anthocyanin biosynthetic genes, to promote their transcription. Expression of vsiR693 negatively regulated anthocyanin biosynthesis in both apple calli and fruits. Furthermore, co-expression of vsiR693 and MdPIF1 suppressed MdPIF1-promoted anthocyanin biosynthesis in apple fruits. Infiltration of ADFVd infectious clone suppressed coloration surrounding the injection sites in apple fruits, while a mutated version of ADFVd, in which the vsiR693 producing region was mutated, failed to repress fruit coloration around the injection sites. These data provide evidence that a viroid-derived small interfering RNA targets host transcription factor to regulate anthocyanin biosynthesis in apple.
RESUMO
Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.
Assuntos
Frutas , Hypocreales , Malus , Frutas/microbiologia , Malus/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismoRESUMO
Accurately and effectively detecting the growth position and contour size of apple fruits is crucial for achieving intelligent picking and yield predictions. Thus, an effective fruit edge detection algorithm is necessary. In this study, a fusion edge detection model (RED) based on a convolutional neural network and rough sets was proposed. The Faster-RCNN was used to segment multiple apple images into a single apple image for edge detection, greatly reducing the surrounding noise of the target. Moreover, the K-means clustering algorithm was used to segment the target of a single apple image for further noise reduction. Considering the influence of illumination, complex backgrounds and dense occlusions, rough set was applied to obtain the edge image of the target for the upper and lower approximation images, and the results were compared with those of relevant algorithms in this field. The experimental results showed that the RED model in this paper had high accuracy and robustness, and its detection accuracy and stability were significantly improved compared to those of traditional operators, especially under the influence of illumination and complex backgrounds. The RED model is expected to provide a promising basis for intelligent fruit picking and yield prediction.
RESUMO
Light is known to regulate anthocyanin pigment biosynthesis in plants on several levels, but the significance of protein phosphorylation in light-induced anthocyanin accumulation needs further investigation. In this study, we investigated the dynamics of the apple fruit phosphoproteome in response to light, using high-performance liquid chromatography-tandem mass spectrometry analysis. Among the differentially phosphorylated proteins, the bZIP (basic leucine zipper) transcription factor, HY5, which has been identified as an anthocyanin regulator, was rapidly activated by light treatment of the fruit. We hypothesized that phosphorylated MdHY5 may play a role in light-induced anthocyanin accumulation of apple fruit. Protein interaction and phosphorylation assays showed that mitogen-activated protein kinase MdMPK6 directly interacted with, and activated, MdHY5 via phosphorylation under light conditions, thereby increasing its stability. Consistent with this finding, the suppression of the mitogen-activated protein kinase genes MdMPK6 or MdHY5 resulted in an inhibition of anthocyanin accumulation, and further showed that light-induced anthocyanin accumulation is dependent on MdMPK6 kinase activity, and is required for maximum MdHY5 activity. Under light conditions, active MdMPK6 phosphorylated MdHY5 leading to accumulation of phospho-MdHY5, which enhanced the binding of MdHY5 to its target anthocyanin related genes in fruit. Our findings reveal an MdMPK6-MdHY5 phosphorylation pathway in light-induced anthocyanin accumulation, providing new insights into the regulation of light-induced anthocyanin biosynthesis in apple fruit at both the transcriptional and post-translational levels.
Assuntos
Malus , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antocianinas , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regulação da Expressão Gênica de Plantas/genéticaRESUMO
OBJECTIVE: This study examined whether diet supplemented with African star apple fruit pulp (FP) can mitigate the effect of high blood pressure on brain neurochemicals, histopathology and expression of genes linked with neuroinflammation. METHODS: Rats were administered with cyclosporine (25â mg/kg.bw) to induce hypertension and were fed with or without FP supplemented diet. Purinergic (Nucleoside triphosphate diphosphohydrolases [NTPdase] and adenosine deaminase [ADA]) cholinergic (acetylcholinesterase [AChE]) and monoaminergic (monoamine oxidase-B) enzymes were assessed in treated and untreated hypertensive rats' brains. Oxidative stress biomarkers (catalase, glutathione-S-transferase, thiols, reactive oxygen species [ROS] and malondialdehyde [MDA]), as well as AChE, tumour necrosis factor and receptor (TNF-α and TNF-α-R) expression, were also determined. RESULTS: FP supplemented diet significantly reduced NTPdase and ADA activities and increased Na+/K+-ATPase activities in hypertensive rats' brains compared to the untreated group. Furthermore, FP reduced acetylcholinesterase and monoamine oxidase-B activities compared to the hypertensive group. Redox imbalance was observed in hypertensive rats with inhibition of antioxidant enzymes and high levels of ROS and MDA. However, FP supplemented diet improved antioxidant enzymes, reduced ROS and MDA production in the brain of hypertensive rats. High blood pressure also triggered upregulation of AChE, TNF-α and TNF-α-R while feeding with FP supplemented diet downregulated the genes. CONCLUSION: This study demonstrates the neuroprotective role of FP supplemented diet against alterations in neurochemicals associated with Alzheimer's disease, oxidative stress-induced neuronal damage and expression of genes linked with neuroinflammation. Moreover, studies on animal behaviour and human subjects are required to confirm these beneficial effects.
Assuntos
Hipertensão , Malus , Ratos , Humanos , Animais , Antioxidantes/farmacologia , Frutas , Malus/metabolismo , Acetilcolinesterase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças Neuroinflamatórias , Dieta , Oxirredução , Encéfalo , Estresse Oxidativo , Colinérgicos/farmacologia , MonoaminoxidaseRESUMO
Anthocyanin accumulation is responsible for the coloration of apple fruit, and their accumulation depends on the expression of anthocyanin biosynthesis-related genes. Light is an environmental stimulus that induces fruit color by regulating genes involved in the anthocyanin biosynthesis pathway. In this study, the roles of light and genetic factors on fruit coloration and anthocyanin accumulation in apple fruit were investigated. Three genes in the anthocyanin biosynthesis pathway, MdCHS, MdANS, and MdUFGT1, were synthesized and cloned into a viral-based expression vector system for transient expression in 'Ruby S' apple fruits. Apple fruits were agroinfiltrated with expression vectors harboring MdCHS, MdANS, and MdUFGT1. Agroinfiltrated apple fruits were then either kept in the dark (bagged fruits) or exposed to light (exposed fruits). The agroinfiltrated fruits showed significantly different coloration patterns, transcript expression levels, and anthocyanin accumulation compared to the control fruits. Moreover, these parameters were higher in exposed fruits than in bagged fruits. For stable expression, MdCHS was introduced into a binary vector under the control of the rice α-amylase 3D (RAmy3D) promoter. The ectopic overexpression of MdCHS in transgenic rice calli showed a high accumulation of anthocyanin content. Taken together, our findings suggest that light, together with the overexpression of anthocyanin biosynthesis genes, induced the coloration and accumulation of anthocyanin content in apple fruits by upregulating the expression of the genes involved in the anthocyanin biosynthesis pathway.
Assuntos
Malus , Oryza , Antocianinas/genética , Frutas/genética , Malus/genéticaRESUMO
The coloration of the apple fruit (Malus × domestica Borkh.) depends on pigment content. Light stimulus activates a broad range of photosynthesis-related genes, including carotenoids. The effect of light on two red commercial apple cultivars, 'Summer Prince' and 'Arisoo' at the juvenile stage were examined. Apple fruits were either bagged to reduce light irradiation or were exposed to direct, enhanced sunlight (reflected). The pigment content and the expression of carotenoid metabolism genes in the peel and flesh of apple fruits were significantly different between the shaded and the reflected parts. These parameters were also different in the two cultivars, highlighting the contribution of the genetic background. Further, a combination of light and transient overexpression of carotenogenic genes increased fruit coloration and pigment content in the variety 'RubyS'. Western blot analysis showed the expression of small heat shock proteins (smHSP) in lysates extracted from the reflected part of the fruits but not in the bagged fruits, indicating the activation of smHSP in response to heat generated by the reflected light. Therefore, the synergy between the genes and the environment dictates the color of apple fruits.
Assuntos
Proteínas de Choque Térmico Pequenas , Malus , Carotenoides/metabolismo , Frutas/genética , Frutas/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico Pequenas/genética , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Phytophthora root rot, caused by Phytophthora cactorum, is an economically important disease on young apple trees. Limited information is available on the effect of different phosphonate application methods and dosages on disease control, fruit and root phosphite concentrations, and soil and root pathogen inoculum levels. Evaluation of phosphonate treatments in three apple orchard trials (two in the Grabouw and one in the Koue Bokkeveld region) showed that foliar sprays (ammonium or potassium phosphonate), trunk sprays and trunk paints, were equally effective at increasing trunk diameter in one trial and yield in a second trial over a 25-month period. Foliar ammonium and potassium phosphonate sprays (12 g of phosphorous acid/tree), and two different dosages of the ammonium phosphonate sprays (â¼4.8 g or 12 g of phosphorous acid/tree) were all equally effective at improving tree growth. The addition of a bark penetrant (polyether-polymethylsiloxane-copolymer) to trunk sprays did not improve the activity of trunk sprays. The low dosage ammonium phosphonate foliar spray (â¼4.8 g a.i./tree) was the only treatment that, in general, yielded significantly lower root phosphite concentrations than the other phosphonate treatments. Root phosphite concentrations were significantly positively correlated (P < 0.0001) with an increase in trunk diameter and negatively (P < 0.0001) with P. cactorum root DNA quantities. Phosphite fruit residues were <31 ppm for all treatments, with the trunk paint treatment (80 g of phosphorous acid/tree applied annually) yielding significantly lower residues than the higher dosage foliar sprays (â¼12 g a.i./tree). Twenty-one months posttreatment, most of the phosphonate treatments in all of the trials similarly significantly reduced P. cactorum DNA quantities estimated directly from roots, but not from soil based on soil baiting DNA analysis. Pathogen quantities in fine feeder roots did not differ significantly from those in higher-order roots (<5 mm diameter). P. cactorum DNA quantities estimated using DNA quantification directly from roots were significantly correlated (P < 0.0001) with those obtained through root leaf baiting DNA analysis and, to a lesser extent, with soil leaf baiting DNA quantities (P = 0.025).
Assuntos
Malus , Organofosfonatos , Fosfitos , Phytophthora , Fosfitos/farmacologia , Doenças das Plantas/prevenção & controleRESUMO
The present study is aimed at evaluating the effect of different processing techniques on astringency reduction, nutrient retention, and sensory attributes in cashew apple fruit and its juice. Astringency attribute was measured by tannin content, while nutrition profile by ascorbic acid, total sugars, and antioxidant activity. Hot water, steaming, and microwave were selected as the source of heat application for treating whole fruit, where the process variables were the temperature and exposure time. The non-thermal technique selected to treat juice was by using bio coagulants, i.e., dried okra pod and drumstick seed powder, where the independent parameters were concentration and settling time. The processes were optimized using a multivariate approach coupled with full factorial design. The obtained results indicated that samples, with 42.6% tannin removal, were rated as being the least astringent. The use of dried okra pod powder under optimal conditions (0.3% concentration, 0.5 h settling time) was found to be the best in reducing astringency while retaining the nutrient and desirable sensory attributes. Maximum tannin removal (48.9 ± 1.6%) with minimum loss of ascorbic acid (8.1 ± 0.9%), total sugar (4.8 ± 0.5%) and antioxidant activity (11.1 ± 1.0) with high sensory score (92.7 ± 1.6%) was achieved with composite desirability of 0.85.
RESUMO
This study aimed at evaluating the antagonistic activity of 16 bacterial strains for the control of brown rot disease caused by Monilinia fructigena, and M. laxa under in vitro and a semi-commercial large-scale trial. These bacterial antagonists' belonging to the genera Alcaligenes, Bacillus, Brevibacterium, Pantoea, Pseudomonas, and Serratia were previously proven effective for control of fire blight of apple. The in vitro dual culture bioassay showed the highest inhibition rates of mycelial growth ranging from 55 to 95% and from 43 to 94% for M. fructigena and M. laxa, respectively. The in vivo bioassay showed moderate and strong inhibition for M. fructigena and M. laxa, respectively. The inhibition rates were dependent on incubation time as well as pathogen virulence. The free-cell bacterial filtrate revealed substantial mycelial growth inhibition ranging from 66 to 86%. The inhibition of conidial germination was from 32 to 78%, suggesting the involvement of metabolites in their biocontrol activity. The antifungal effect of the volatile compounds (VCOs) was observed for all bacteria with mycelial inhibition varying from 12 to 70%. Overall, their efficacy was substantially affected by the nature of the bacterial strains and the modes of action. Taken together, these results underscore that ACBC1 and SF14 for M. fructigena and SP10 and ACBP1 for M. laxa were the most effective bacterial strains. These strains were confirmed effective in a semi-commercial large-scale trial. Interestingly, their efficacies were found to be comparable to those of both commercial BCAs (B. subtilis Y1336 and P. agglomerans P10c), but slightly lower than thiophanate-methyl fungicide. The ability of most bacterial strains to produce lytic enzymes (Amylase, Protease or Cellulase) and lipopeptides (bacillomycin, fengycin, iturin and surfactin) was demonstrated by biochemical and molecular analyzes. Therefore, our findings suggest that the bacterial antagonists ACBC1, SF14, SP10 and ACBP1, have the potential to prevent brown rot disease.
Assuntos
Alcaligenes faecalis/química , Ascomicetos/fisiologia , Bacillus amyloliquefaciens/química , Fungicidas Industriais/farmacologia , Pantoea/química , Doenças das Plantas/microbiologia , Alcaligenes faecalis/metabolismo , Bacillus amyloliquefaciens/metabolismo , Frutas/microbiologia , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Malus/microbiologia , Pantoea/metabolismoRESUMO
The enzyme driven changes in plant cell wall structure during fruit ripening result in debranching, depolymerization and solubilization of pectin polysaccharides, which has an effect in terms of the postharvest quality losses in fruit. Atomic force microscopy (AFM) has revealed that diluted alkali soluble pectins (DASP) from fruit and vegetables have an interesting tendency to self-assemble into regular structures. However, the mechanism is not yet fully understood. The current study is aimed at investigating the role of neutral sugars, namely galactose, rhamnose and arabinose in the formation of the branched structure of DASP. ß-galactosidase, α-L-rhamnosidase and α-L-arabinofuranosidase enzymes were used for the treatment of DASP extracted from Golden Delicious apple flesh (Malus domestica cv. Golden Delicious). The effects of the selective degradation of pectic polysaccharides after 15, 30, 60, 90 and 120 min of incubation were observed using AFM. The α-L-rhamnosidase enzyme activity on pectin extracted with Na2CO3 did not cause any visible or measurable degradation of the molecular structure. The moderate effects of ß-galactosidase enzymatic treatment suggested the possible role of galactose in the branching of DASP molecules deposited on mica. Data obtained for α-L-arabinofuranosidase indicated the crucial role of arabinose in the formation and preservation of the highly branched structure of the DASP fraction.
Assuntos
Frutas/química , Glicosídeo Hidrolases/química , Malus/química , Pectinas/química , Extratos Vegetais/química , beta-Galactosidase/química , Carbonatos/química , Hidrólise , Microscopia de Força AtômicaRESUMO
Combinatorial peptide ligand libraries coupled to MS was applied to extensively map the proteome of apple fruit, and to detect its presence in commercial apple juice and cider to evaluate their authenticity and genuineness. Using the Uniprot_Malus database, 96 proteins were detected in apples, among which 30 proteins were specifically captured via combinatorial peptide ligand libraries. Next, three proteins, previously recognized in fruits, were found in apple juice, which were involved in cellular metabolism of fruit maturation and in allergenic reactions. On the other hand, only one Malus allergen was identified in cider beads eluate, demonstrating that the industrial processes did not prevent any negative effects in sensitive subjects. Thus, the present study not only increases the knowledge of the apple proteome but also offers a reliable analytical method to assess quality and genuineness of commercial products, which could be also used to inform consumers about the presence of allergens.
Assuntos
Sucos de Frutas e Vegetais/análise , Malus/química , Espectrometria de Massas/métodos , Proteínas de Plantas/análise , Proteômica/métodos , Frutas/química , Biblioteca de Peptídeos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteoma/análiseRESUMO
The ability to accurately recognize fruit on trees is a critical step in robotic harvesting. Many researchers have investigated a variety of image analysis methods based on different imaging technologies for fruit recognition. However, challenges still occur in the implementation of this goal due to various factors, especially variable light and proximal color background. In this study, images with fruit were acquired with a Forward Looking Infrared (FLIR) camera based on the Multi-Spectral Dynamic Imaging (MSX) technology. In view of its imaging mechanism, the optimal timing and shooting angle for image acquisition were pre-analyzed to obtain the maximum contrast between fruit and background. An effective algorithm was developed for locking potential fruit regions, which was based on the pseudo-color and texture information from MSX images. The algorithm was applied to 506 training and 340 evaluating images, including a variety of fruit and complex backgrounds. Recognition precision and sensitivity of these complete fruit regions were both above 92%, and those of incomplete fruit regions were not lower than 72%. The average processing time for each image was less than 1 s. The results indicated that the developed algorithm based on MSX imaging was effective for fruit recognition and could be suggested as a potential method for the automation of orchard production.
Assuntos
Algoritmos , Frutas/metabolismo , Malus/metabolismoRESUMO
OBJECTIVE: The aim of the study was in vitro and in vivo characterization of cosmetic cream with 6% of standardized wild apple fruit extract, stabilized by conventional non-ionic emulsifier-CEW, in order to determine the influence of emulsifiers (conventional vs. biodegradable) on the characteristics of creams and their effects on the skin. METHODS: Organoleptic and physico-chemical (pH values and electrical conductivity) analysis was performed, determination of fruit acids-FAs content (using HPLC analysis) and estimation of its antioxidant activity-AA (using DPPH test) during 180 days. In vivo study included following examinations: screening of safety profile (after creams application under occlusion during 24 h at human skin); skin moisturizing potential, transepidermal water loss-TEWL, skin pH after 28 days of cream application and hypopigmentation efficacy 7 days of cream application at artificially induced skin hyperpigmentation. RESULTS: Investigated cosmetic cream-CEW showed satisfactory organoleptic, physico-chemical characteristics, stability, FAs content (0.13%) and AA (19.25 ± 0.67 %RSC) after preparation, which remained unchanged over the study period. In vivo investigation revealed absence of skin irritation after CEW's application under occlusion. An increase of skin moisturization (after 14 days ΔEC was 18.52 ± 11.51 and after 28 days of applications 16.52 ± 9.36) during 28 day-study, with unchanged TEWL and skin pH values was shown. Decrease of melanin index was revealed, too (after 7 days ΔMI was -31.40 ± 16.50). CONCLUSION: Cosmetic cream stabilized by conventional emulsifier showed better antioxidant potential and weaker moisturizing and hypopigmentation effects related to the cream with same composition but stabilized by biodegradable emulsifiers. Based on all mentioned above, investigated cosmetic cream might be considered for potential use as modern, stable, safe and efficient cosmetic product in the prevention and/or treatment of oxidative stress-related skin changes and/or damages, for moisturization of dry, even irritated skin as well as for lightening of hyperpigmented skin. RÉSUMÉ: OBJECTIF Le but de l'étude était la caractérisation in vitro et in vivo d'une crème cosmétique contenant 6 % d'extrait normalisé de pomme sauvage, stabilisée par un émulsifiant non ionique conventionnel-CEW, afin de déterminer l'influence des émulsifiants (conventionnels vs biodégradables) sur les caractéristiques des crèmes et les effets sur la peau. MÉTHODES: Des analyses organoleptiques et physico-chimiques (pH et conductivité électrique) ont été effectuées, la détermination de la teneur en acides de fruits et en acides gras polyinsaturés (par CLHP), et l'estimation de sa teneur en activité antioxydante (AA) (à l'aide du test DPPH) pendant 180 jours. L'étude in vivo comprenait les examens suivants : dépistage du profil d'innocuité (après application de crèmes sous occlusion pendant 24 h sur la peau humaine); potentiel d'hydratation de la peau, perte d'eau transépidermique (PETE), pH de la peau après 28 jours d'application de la crème et efficacité de l'hypopigmentation après 7 jours d'application de la crème sur une hyperpigmentation de la peau induite artificiellement. RÉSULTATS: La crème cosmétique-CEW étudiée a montré des caractéristiques organoleptiques, physico-chimiques, une stabilité, une teneur en AG (0,13 %) et en AA (19,25 ± 0,67 % RSC) satisfaisantes après préparation, qui sont demeurées inchangées au cours de la période de l'étude. L'étude in vivo a révélé l'absence d'irritation cutanée après l'application de CEW sous occlusion. Une augmentation de l'hydratation de la peau (après 14 jours de DEC était de 18,52 ± 11,51 et après 28 jours d'applications de 16,52 ± 9,36) pendant l'étude de 28 jours, avec une PETE et des valeurs de pH cutané inchangées, a été démontrée. Une diminution de l'indice de mélanine a été mise en évidence également (après 7 jours, ΔMI était de 31,40 ± 16,50). CONCLUSION: La crème cosmétique stabilisée par un émulsifiant conventionnel a montré un meilleur potentiel antioxydant et des effets d'hydratation et d'hypopigmentation plus faibles par rapport à la crème de même composition mais stabilisée par des émulsifiants biodégradables. D'après les données précédentes, la crème cosmétique étudiée pourrait être considérée comme un produit cosmétique moderne, stable, sûr et efficace dans la prévention et/ou le traitement des changements et/ou dommages cutanés liés au stress oxydatif, pour l'hydratation de la peau sèche, voire irritée, ainsi que pour éclaircir la peau hyperpigmentée.
Assuntos
Antioxidantes/farmacologia , Materiais Biocompatíveis/química , Cosméticos , Emulsificantes/química , Malus/química , Extratos Vegetais/farmacologia , Creme para a Pele , Adulto , Humanos , Concentração de Íons de Hidrogênio , Pigmentação da Pele/efeitos dos fármacos , Adulto JovemRESUMO
In the search for antifungal lead compounds from natural resources, Notopterygium incisum, a medicine plant only distributed in China, showed antifungal potential against apple fruit pathogens. Based on the bioassay-guided isolation, chromatography fraction 6 of the ethyl acetate partition exhibited significant in vitro and in vivo antifungal activities against apple fruit pathogens. Furthermore, nine antifungal secondary metabolites, including five linear furocoumarins (1-5), two phenylethyl esters (6-7), one falcarindiol (8), and one sesquiterpenoid (9), were isolated and elucidated from fraction 6. Compound 5 is a new metabolite, and 9 isolated from the genus Notopterygium for the first time. The purified compounds (1-9) were firstly reported to exhibit antifungal activities against apple fruit pathogens of Colletotrichum gloeosporioides and Botryosphaeria dothidea with the MIC values ranging from 8 to 250â¯mgâ¯L-1, especially 8 of 16 and 8â¯mgâ¯L-1, respectively. Moreover, 8 could inhibit the spore germination and new sporulation of B. dothidea, as well as enhance the membrane permeabilization of B. dothidea spores. This was the first investigation for the antifungal components against apple fruit pathogens from Notopterygium incisum, which has great potential to be developed into bio-fungicides.
Assuntos
Apiaceae/química , Fungos/efeitos dos fármacos , Malus/microbiologia , Extratos Vegetais/farmacologia , Apiaceae/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Di-Inos/farmacologia , Álcoois Graxos/farmacologia , Fungos/fisiologia , Fungicidas Industriais/farmacologia , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização por Electrospray , Esporos Fúngicos/efeitos dos fármacosRESUMO
The 'Hongyu' apple is an early ripening apple cultivar and usually used for fresh marketing. Due to the short ripening period, most of the fruit are harvested at the commercial maturity stage for proper marketing distribution and a longer shelf life. Fruit ripening involves delicate changes to its metabolic and physiological traits through well-organized synchronization of several hormones and regulatory steps. A clear understanding of these hormonal alterations is crucial for extending the period from commercial to physiological ripening. This study was intended to clarify the hormonal alterations and anthocyanin biosynthesis process prior to and immediate after, the harvesting of apple fruit considering the commercial maturity stage. Fruits harvested at 120 Days after flowering (DAF) (HY_4th) was considered as commercially ripened, 110 DAF (HY_3rd) as pre-ripening and 120 DAF followed by five days storage at 20 °C (HY_20 °C_5) as post-ripening samples. Three different stages of fruit were used for transcriptome assembly using RNA-Seq. Results revealed 9187 differentially expressed genes (DEGs) in the post-ripening samples, which was comparatively lower (922 DEGs) in the pre-ripening fruits. DEGs were subjected to Gene Ontology analysis and 31 categories were significantly enriched in the groups 'biological process,' 'molecular function' and 'cellular component.' The DEGs were involved in hormonal signaling pathways like ethylene, abscisic acid (ABA), auxin, gibberellin (GA), brassinosteroid (BR) and anthocyanin biosynthesis pathways such as PAL, 4CL, CHI, DFR, F3H, UFGT. Several transcription factors like the MADS-box gene, MYB, bHLH, NAC, WRKY and HSF were differentially expressed between the pre- and post-ripening fruits. Selected DEGs were subjected to gene expression analysis using quantitative RT-PCR (qRT-PCR) and the results were consistent with those of RNA-Seq. Our data suggested that in addition to ethylene, ABA and other hormones also play key roles in regulating apple fruit ripening and may interact with the ethylene signaling process. Additionally, our data provided an exhibition of the expression pattern of genes in the anthocyanin biosynthesis pathway.
Assuntos
Antocianinas/biossíntese , Frutas/genética , Regulação da Expressão Gênica de Plantas , Malus/genética , Proteínas de Plantas/genética , Transcriptoma , Ácido Abscísico/biossíntese , Ácido Abscísico/genética , Antocianinas/genética , Brassinosteroides/biossíntese , Etilenos/biossíntese , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Giberelinas/biossíntese , Giberelinas/genética , Ácidos Indolacéticos/metabolismo , Malus/crescimento & desenvolvimento , Malus/metabolismo , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/biossíntese , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
OBJECTIVE: The aim of this study was in vitro and in vivo characterization of cosmetic cream with 6% of wild apple fruit water extract, containing 3.5% of alpha-hydroxyacids-AHAs and polyphenolic compounds, stabilized by biodegradable alkyl-polyglucoside emulsifiers. METHODS: In vitro characterization of cream included organoleptic and physico-chemical (pH values and electrical conductivity) analysis, antioxidant activity-AA estimation (using DPPH test) during 180 days of storage at 22±2°C and determination of cosmetic active substances content-AHAs (using HPLC analysis). In vivo estimation of skin irritation potential after creams application under occlusion during 24h was investigated employing the biophysical methods on 12 healthy volunteers; hydration efficiency, transepidermal water loss-TEWL, skin pH, erythema-EI and melanin index-MI on 10 healthy volunteers after 28 days of cream application and bleaching efficiency on 10 healthy volunteers after 7 days of cream application after artificially induced skin hyperpigmentation. RESULTS: Investigated cosmetic cream was pale beige color, odorless, semi-solid consistency and homogeneous, with pH values of 6.53±0.14, electrical conductivity above 50 µS/cm and AA of 24.96%RSC after preparation and these characteristics were stable during investigated period. In vivo measurements revealed absence of skin irritation after cream application under occlusion, which was part of it's safety profile. Increase of skin hydration after 14 days of cream application was 17.28±12.23 and after 28 days 21.19±7.59. In addition, in performed experiment TEWL and skin pH values during cream application remained unchanged. Cream application after artificial hyperpigmentation induced decrease of MI (∆MI after 7 days was -45.30±18.55) CONCLUSION: Formulated cosmetic cream with 6% of standardized wild apple fruit water extract and stabilized by biodegradable alkyl-polyglucoside emulsifiers demonstrated good stability, acceptable level of in vitro antioxidant activity, absence of skin irritation after cream application under occlusion and positive effects of cream on human skin after application (hydrating and bleaching effects). All mentioned properties make the cream suitable for possible usage as cosmetic product for preventing the skin damages caused by oxidative stress, for moisturizing the dry skin and bleaching of skin hyperpigmentation. This article is protected by copyright. All rights reserved.
RESUMO
BACKGROUND: Superficial scald is a physiological disorder of apple fruit characterized by sunken, necrotic lesions appearing after prolonged cold storage, although initial injury occurs much earlier in the storage period. To determine the degree to which the transition to cell death is an active process and specific metabolism involved, untargeted metabolic and transcriptomic profiling was used to follow metabolism of peel tissue over 180 d of cold storage. RESULTS: The metabolome and transcriptome of peel destined to develop scald began to diverge from peel where scald was controlled using antioxidant (diphenylamine; DPA) or rendered insensitive to ethylene using 1-methylcyclopropene (1-MCP) beginning between 30 and 60 days of storage. Overall metabolic and transcriptomic shifts, representing multiple pathways and processes, occurred alongside α-farnesene oxidation and, later, methanol production alongside symptom development. CONCLUSIONS: Results indicate this form of peel necrosis is a product of an active metabolic transition involving multiple pathways triggered by chilling temperatures at cold storage inception rather than physical injury. Among multiple other pathways, enhanced methanol and methyl ester levels alongside upregulated pectin methylesterases are unique to peel that is developing scald symptoms similar to injury resulting from mechanical stress and herbivory in other plants.
Assuntos
Resposta ao Choque Frio , Frutas/metabolismo , Malus/metabolismo , Doenças das Plantas , Hidrolases de Éster Carboxílico/genética , Temperatura Baixa , Ésteres/metabolismo , Armazenamento de Alimentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/enzimologia , Malus/genética , Metaboloma , Metanol/metabolismo , Doenças das Plantas/genética , Regulação para CimaRESUMO
The effect of natural coating by using fresh Aloe vera (A. vera) gel alleviating browning of fresh-cut wax apple fruits cv. Taaptimjaan was investigated. The fresh-cut fruits were dipped in fresh A. vera gel at various concentrations of 0, 25, 75 or 100 % (v/v) for 2 min at 4 ± 1 °C for 6 days. Lightness (L*), whiteness index (WI), browning index (BI), total color difference (ΔE*), sensorial quality attributes, total phenolic (TP) content, antioxidant activity and polyphenol oxidase (PPO) and peroxidase (POD) activities were determined. During storage, L* and WI of the fresh-cut fruits surface decreased whilst their BI and ΔE* increased. A. vera coating maintained the L* and WI and delayed the increase in BI and ΔE*, especially at 75 % A. vera dip. The fresh-cut fruits dipped in 75 % A. vera had the lowest browning score, the highest acceptance score and delayed the increase in TP content and PPO activity. However POD activity was induced by A. vera coating. Antioxidant activity had no effect on browning incidence of the fresh-cut fruits. Consequently, A. vera gel coating could maintain quality and retarded browning of fresh-cut wax apple fruits during storage.