Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Small ; : e2403129, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030967

RESUMO

The strategic integration of low-dimensional InAs-based materials and emerging van der Waals systems is advancing in various scientific fields, including electronics, optics, and magnetics. With their unique properties, these InAs-based van der Waals materials and devices promise further miniaturization of semiconductor devices in line with Moore's Law. However, progress in this area lags behind other 2D materials like graphene and boron nitride. Challenges include synthesizing pure crystalline phase InAs nanostructures and single-atomic-layer 2D InAs films, both vital for advanced van der Waals heterostructures. Also, diverse surface state effects on InAs-based van der Waals devices complicate their performance evaluation. This review discusses the experimental advances in the van der Waals epitaxy of InAs-based materials and the working principles of InAs-based van der Waals devices. Theoretical achievements in understanding and guiding the design of InAs-based van der Waals systems are highlighted. Focusing on advancing novel selective area growth and remote epitaxy, exploring multi-functional applications, and incorporating deep learning into first-principles calculations are proposed. These initiatives aim to overcome existing bottlenecks and accelerate transformative advancements in integrating InAs and van der Waals heterostructures.

2.
J Exp Bot ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847578

RESUMO

The rhizosphere contains both essential nutrients and potentially harmful substances for plant growth. Plants, as sessile organisms, must efficiently absorb the necessary nutrients while actively avoiding the uptake of toxic compounds. Metalloids, which are elements that exhibit properties of both metals and nonmetals, can have different effects on plant growth, ranging from being essential and beneficial to being toxic. The toxicity of metalloids in plants arises due to either the dosage of exposure or the specific elemental type. To utilize or detoxify these elements, plants have developed various transporters that regulate their uptake and distribution in plants. Arguably, genomic sequence analysis suggests the presence of such transporter families throughout the plant kingdom, from chlorophytes to higher plants. These transporters form defined families with related transport preferences. The isoforms within these families have evolved with specialized functions regulated by defined selectivity. Hence, understanding transporters' chemistry to atomic detail is important to achieve desired genetic modifications for crop improvement. Here, we outline various adaptations in plant transport systems to deal with metalloids, including their uptake, distribution, detoxification, and homeostasis in plant tissues. Structural parallels are drawn to other nutrient transporter systems to support emerging themes of functional diversity of active sites of transporters, elucidating adaptations of plants to utilize and extrude metalloid concentrations. Considering the observed physiological importance of metalloids, this review intends to highlight the shared and disparate features in metalloid transport systems and their corresponding nutrient transporters.

3.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793995

RESUMO

A broadband differential-MMIC low-noise amplifier (DLNA) using metamorphic high-electron-mobility transistors of 70 nm in Gallium Arsenide (70 nm GaAs mHEMT technology) is presented. The design and results of the performance measurements of the DLNA in the frequency band from 1 to 16 GHz are shown, with a high dynamic range, and a noise figure (NF) below 1.3 dB is obtained. In this work, two low-noise amplifiers (LNAs) were designed and manufactured in the OMMIC foundry: a dual LNA, which we call balanced, and a differential LNA, which we call DLNA. However, the paper focuses primarily on DLNA because of its differential architecture. Both use a 70 nm GaAs mHEMT space-qualified technology with a cutoff frequency of 300 GHz. With a low power bias Vbias/Ibias (5 V/40.5 mA), NF < 1.07 dB "on wafer" was achieved, from 2 to 16 GHz; while with the measurements made "on jig", NF = 1.1 dB, from 1 to 10 GHz. Furthermore, it was obtained that NF < 1.5 dB, from 1 to 16 GHz, with a figure of merit equal to 145.5 GHz/mW. Finally, with the proposed topology, several LNAs were designed and manufactured, both in the OMMIC process and in other foundries with other processes, such as UMS. The experimental results showed that the NF of the DLNA MMIC with multioctave bandwidth that was built in the frequency range of the L-, S-, C-, and X-bands was satisfactory.

4.
Nano Lett ; 23(23): 11057-11065, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048278

RESUMO

In the realm of two-dimensional (2D) crystal growth, the chemical composition often determines the thermodynamically favored crystallographic structures. This relationship poses a challenge in synthesizing novel 2D crystals without altering their chemical elements, resulting in the rarity of achieving specific crystallographic symmetries or lattice parameters. We present 2D polymorphic FeAs crystals that completely differ from bulk orthorhombic FeAs (Pnma), differing in the stacking sequence, i.e., polytypes. Preparing polytypic FeAs outlines a strategy for independently controlling each symmetry operator, which includes the mirror plane for 2Q-FeAs (I4/mmm) and the glide plane for 1Q-FeAs (P4/nmm). As such, compared to bulk FeAs, polytypic 2D FeAs shows highly anisotropic properties such as electrical conductivity, Young's modulus, and friction coefficient. This work represents a concept of expanding 2D crystal libraries with a given chemical composition but various crystal symmetries.

5.
Nano Lett ; 23(12): 5634-5640, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318449

RESUMO

Time-reversal invariance (TRS) and inversion symmetry (IS) are responsible for the topological band structure in Dirac semimetals (DSMs). These symmetries can be broken by applying an external magnetic or electric field, resulting in fundamental changes to the ground state Hamiltonian and a topological phase transition. We probe these changes using universal conductance fluctuations (UCF) in the prototypical DSM, Cd3As2. With increasing magnetic field, the magnitude of the UCF decreases by a factor of 2, in agreement with numerical calculations of the effect of broken TRS. In contrast, the magnitude of the UCF increases monotonically when the chemical potential is gated away from the charge neutrality point. We attribute this to Fermi surface anisotropy rather than broken IS. The concurrence between experimental data and theory provides unequivocal evidence that UCF are the dominant source of fluctuations and offers a general methodology for probing broken-symmetry effects in topological quantum materials.

6.
Small ; : e2309862, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078783

RESUMO

In this study, germanium arsenide (GeAs) is investigated as a promising nanomaterial for application in triboelectric nanogenerators and green energy harvesting. The mechanical and electrical properties of mechanically exfoliated GeAs on silica substrates are evaluated through friction force microscopy and Kelvin probe force microscopy, respectively. First, it is observed that the surface potential/work function of GeAs varied with thickness. Second, thickness-dependent friction on GeAs films is found. However, the variation of friction with GeAs thickness followed an inverse trend typically observed for most other 2D material systems: larger friction is measured on thicker GeAs films. The higher friction is attributed to the higher surface potential of thicker GeAs, resulting from the accumulation of electrons on the GeAs surface that also resulted in higher adhesion between GeAs surface and the tip. Finally, history-dependent friction is observed and resulted from a continual increase in the friction force as the surface is scanned and originated from the triboelectrification of the surface. The dynamic triboelectrification behavior of thick GeAs during the scanning process is further verified and visualized by a serial experiment, where the GeAs is tribo-electrified through scanning and gradually de-electrified/discharged upon ceasing the scan.

7.
Small ; 19(33): e2301258, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086146

RESUMO

The low-temperature molecular precursor approach can be beneficial to conventional solid-state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single-step, room-temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)n and NiBr2 (thf)1.5 . During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ-NiOOH) comprising edge-sharing (NiO6 ) layers with intercalated potassium ions and a d-spacing of 7.27 Å. Remarkably, the intercalated γ-NiOOHx phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ-NiOOHx can effectively catalyse the OER for 100 h at a high current density (400 mA cm-2 ) and achieves outstandingly high current densities (>600 mA cm-2 ) for the selective, value-added oxidation of 5-hydroxymethylfurfural (HMF). The NiP-derived γ-NiOOHx shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room-temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition-metal pnictides.

8.
Nanotechnology ; 34(20)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753755

RESUMO

Multilayer borophene was predicted to have a similar semiconductor property to its monolayer arise from the weak van der Waals interactions between the layers. Besides, multilayer borophene has a higher carrier mobility than monolayer ones, so it is placed great hopes in applications of photoelectric and photovoltaic devices. However, its preparation and application in experiments of multilayer borophene are still lacking. Here, multilayerα'-4H-borophene was synthesized on semiconductingn-type GaAs substrates using NaBH4source as precursor and hydrogen as the carrier gas under controlled temperature and pressure conditions. The experimental results of the borophene are in good agreement with those of its theoretical prediction. The borophene is a semiconductor with a bandgap of 2.48 eV. To demonstrate the device application potential of the borophene, a near-infrared photodetector composed ofp-type borophene andn-type GaAs was fabricated. The photodetector shows a high photoresponsivity of 0.31 mA·W-1, a high specific detectivity of108Jones, and a fast response or recovery speed of 117 or 109 ms under the irradiation with the wavelength of 940 nm at zero bias. The results prove that theα'-4H-borophene/GaAs photodetector can show high sensitivity and zero consumption, which is of great value in meeting the appeal of sustainable development of society.

9.
Nanotechnology ; 34(38)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37321202

RESUMO

Control over the distribution of dopants in nanowires is essential for regulating their electronic properties, but perturbations in nanowire microstructure may affect doping. Conversely, dopants may be used to control nanowire microstructure including the generation of twinning superlattices (TSLs)-periodic arrays of twin planes. Here the spatial distribution of Be dopants in a GaAs nanowire with a TSL is investigated using atom probe tomography. Homogeneous dopant distributions in both the radial and axial directions are observed, indicating a decoupling of the dopant distribution from the nanowire microstructure. Although the dopant distribution is microscopically homogenous, radial distribution function analysis discovered that 1% of the Be atoms occur in substitutional-interstitial pairs. The pairing confirms theoretical predictions based on the low defect formation energy. These findings indicate that using dopants to engineer microstructure does not necessarily imply that the dopant distribution is non-uniform.


Assuntos
Arsenicais , Nanofios , Nanofios/química , Nanotecnologia/métodos , Propriedades de Superfície , Arsenicais/química
10.
Nanotechnology ; 34(31)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37137297

RESUMO

van der Waals (vdW) layered materials have shown great potential for future optoelectronic applications owing to their unique and variable properties. In particular, two-dimensional layered materials enable the creation of various circuital building blocks via vertical stacking, e.g. the vertical p-n junction as a key one. While numerous stable n-type layered materials have been discovered, p-type materials remain relatively scarce. Here, we report on the study of multilayer germanium arsenide (GeAs), another emerging p-type vdW layered material. We first verify the efficient hole transport in a multilayer GeAs field-effect transistor with Pt electrodes, which establish low contact potential barriers. Subsequently, we demonstrate a p-n photodiode featuring a vertical heterojunction of a multilayer GeAs and n-type MoS2monolayer, exhibiting a photovoltaic response. This study promotes that 2D GeAs is a promising candidate for p-type material in vdW optoelectronic devices.

11.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679663

RESUMO

A 1.4-dB Noise Figure (NF) four-stage K-band Monolithic Microwave Integrated Circuit (MMIC) Low-Noise Amplifier (LNA) in UMS 100 nm GaAs pHEMT technology is presented. The proposed circuit is designed to cover the 5G New Release n258 frequency band (24.25-27.58 GHz). Momentum EM post-layout simulations reveal the circuit achieves a minimum NF of 1.3 dB, a maximum gain of 34 dB, |S11| better than -10 dB from 23 GHz to 29 GHz, a P1dB of -18 dBm and an OIP3 of 24.5 dBm. The LNA draws a total current of 59.1 mA from a 2 V DC supply and results in a chip size of 3300 × 1800 µm2 including pads. We present a design methodology focused on the selection of the active device size and DC bias conditions to obtain the lowest NF when source degeneration is applied. The design procedure ensures a minimum NF design by selecting a device which facilitates a simple input matching network implementation and obtains a reasonable input return loss thanks to the application of source degeneration. With this approach the input matching network is implemented with a shunt stub and a transmission line, therefore minimizing the contribution to the NF achieved by the first stage. Comparisons with similar works demonstrate the developed circuit is very competitive with most of the state-of-the-art solutions.


Assuntos
Micro-Ondas , Próteses e Implantes , Amplificadores Eletrônicos , Tecnologia
12.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772490

RESUMO

The application of the unique properties of terahertz radiation is increasingly needed in sensors, especially in those operating at room temperature without an external bias voltage. Bow-tie microwave diodes on the base of InGaAs semiconductor structures meet these requirements. These diodes operate on the basis of free-carrier heating in microwave electric fields, which allows for the use of such sensors in millimeter- and submillimeter-wavelength ranges. However, there still exists some uncertainty concerning the origin of the voltage detected across these diodes. This work provides a more detailed analysis of the detection mechanisms in InAlAs/InGaAs selectively doped bow-tie-shaped semiconductor structures. The influence of the InAs inserts in the InGaAs layer is investigated under various illumination and temperature conditions. A study of the voltage-power characteristics, the voltage sensitivity dependence on frequency in the Ka range, temperature dependence of the detected voltage and its relaxation characteristics lead to the conclusion that a photo-gradient electromotive force arises in bow-tie diodes under simultaneous light illumination and microwave radiation.

13.
Nano Lett ; 22(22): 8845-8851, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36332116

RESUMO

Implementing superconductors capable of proximity-inducing a large energy gap in semiconductors in the presence of strong magnetic fields is a major goal toward applications of semiconductor/superconductor hybrid materials in future quantum information technologies. Here, we study the performance of devices consisting of InAs nanowires in electrical contact with molybdenum-rhenium (MoRe) superconducting alloys. The MoRe thin films exhibit transition temperatures of ∼10 K and critical fields exceeding 6 T. Normal/superconductor devices enabled tunnel spectroscopy of the corresponding induced superconductivity, which was maintained up to ∼10 K, and MoRe-based Josephson devices exhibited supercurrents and multiple Andreev reflections. We determine an induced superconducting gap lower than expected from the transition temperature and observe gap softening at finite magnetic field. These may be common features for hybrids based on large-gap, type II superconductors. The results encourage further development of MoRe-based hybrids.

14.
Nano Lett ; 22(3): 1345-1349, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089042

RESUMO

Twinning superlattices (TSLs) are a growing class of semiconductor structures proposed as a means of phonon and optical engineering in nanowires (NWs). In this work, we examine TSL formation in Te-doped GaAs NWs grown by a self-assisted vapor-liquid-solid mechanism (with a Ga droplet as the seed particle), using selective-area molecular beam epitaxy. In these NWs, the TSL structure is comprised of alternating zincblende twins, whose formation is promoted by the introduction of Te dopants. Using transmission electron microscopy, we investigated the crystal structure of NWs across various growth conditions (V/III flux ratio, temperature), finding periodic TSLs only at the low V/III flux ratio of 0.5 and intermediate growth temperatures of 492 to 537 °C. These results are explained by a kinetic growth model based on the diffusion flux feeding the Ga droplet.

15.
Angew Chem Int Ed Engl ; 62(11): e202217316, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36642696

RESUMO

We report here the synthesis and structural characterization of the first binary iron arsenide cluster anion, [Fe3 (As3 )3 (As4 )]3- , present in both [K([2.2.2]crypt)]3 [Fe3 (As3 )3 (As4 )] (1) and [K(18-crown-6)]3 [Fe3 (As3 )3 (As4 )]⋅en (2). The cluster contains an Fe3 triangle with three short Fe-Fe bond lengths (2.494(1) Å, 2.459(1) Šand 2.668(2) Šfor 1, 2.471(1) Å, 2.473(1) Šand 2.660(1) Šfor 2), bridged by a 2-butene-like As4 unit. An analysis of the electronic structure using DFT reveals a triplet ground state with direct Fe-Fe bonds stabilizing the Fe3 core.

16.
Nano Lett ; 21(23): 9922-9929, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34788993

RESUMO

Integration of high-quality semiconductor-superconductor devices into scalable and complementary metal-oxide-semiconductor compatible architectures remains an outstanding challenge, currently hindering their practical implementation. Here, we demonstrate growth of InAs nanowires monolithically integrated on Si inside lateral cavities containing superconducting TiN elements. This technique allows growth of hybrid devices characterized by sharp semiconductor-superconductor interfaces and with alignment along arbitrary crystallographic directions. Electrical characterization at low temperature reveals proximity induced superconductivity in InAs via a transparent interface.

17.
Photochem Photobiol Sci ; 20(8): 1069-1085, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341968

RESUMO

The purpose of this study was to assess the topic use of Sebastiania hispida extract and low-level gallium-arsenide laser irradiation (GaAs, 904 nm) to reduce the local myonecrosis and edema of Bothrops moojeni snake venom-injected gastrocnemius. Wistar rats receiving intramuscular venom injection (VBm) were compared with saline control (S) and envenomed rats receiving local exposure to plant extract (VExt) or laser irradiation (VL). The phytochemistry and thin-layer chromatography of S. hispida extract indicated the presence of phenolic compounds like gallic acid and flavonoids including quercetin. Gastrocnemius of VExt and VL groups had a significant reduction of edema and creatine kinase (CK) activities and a greater Myogenin (MyoG) expression compared to VBm group, with the plant extract efficacy better than laser exposure. Reduction of edema and serum CK activities reflects a lessening of muscle damage, whereas the increase of MyoG indicates myoblast differentiation and acceleration of muscle repair. The S. hispida richness in phenolic compounds and flavonoids, such as the light modulatory ability to triggering a multitude of cell signalings likely underlie the positive outcomes. Our findings suggest both treatments as potential auxiliary tools to be explored in clinical trials in combination with anti-venom therapy after Bothropic snakebites.


Assuntos
Antivenenos/farmacologia , Terapia com Luz de Baixa Intensidade , Mordeduras de Serpentes/radioterapia , Venenos de Serpentes/toxicidade , Animais , Antivenenos/uso terapêutico , Ratos , Ratos Wistar
18.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34044379

RESUMO

Semiconductor p-n junctions are essential building blocks of electronic and optoelectronic devices. Although vertical p-n junction structures can be formed readily by growing in sequence, lateral p-n junctions normal to surface direction can only be formed on specially patterned substrates or by post-growth implantation of one type of dopant while protecting the oppositely doped side. In this study, we report the monolithic formation of lateral p-n junctions in GaAs nanowires (NWs) on a planar substrate sequentially through the Au-assisted vapor-liquid-solid selective lateral epitaxy using metalorganic chemical vapor deposition. p-type and n-type segments are formed by modulating the gas phase flow of p-type (diethylzinc) and n-type (disilane) precursorsin situduring nanowire growth, allowing independent sequential control of p- and n-doping levels self-aligned in-plane in a single growth run. The p-n junctions formed are electrically characterized by fabricating arrays of p-n junction NW diodes with coplanar ohmic metal contacts and two-terminalI-Vmeasurements. The lateral p-n diode exhibits a 2.15 ideality factor and a rectification ratio of ∼106. The electron beam-induced current measurement confirms the junction position. The extracted minority carrier diffusion length is much higher compared to those previously reported, suggesting a low surface recombination velocity in these lateral NWp-n diodes.

19.
Sensors (Basel) ; 21(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209095

RESUMO

The article presents the results of experimental studies of the dc and high-frequency electrical characteristics of planar microwave diodes that are fabricated on the base of the n-AlxGa1-xAs layer (x = 0, 0.15 or 0.3), epitaxially grown on a semi-insulating GaAs substrate. The diodes can serve as reliable and inexpensive sensors of microwave radiation in the millimeter wavelength range; they sense electromagnetic radiation directly, without any external bias voltage at room temperature. The investigation revealed a strong dependence of the detection properties of the microwave diodes on AlAs mole fraction x: in the Ka microwave frequency range, the median value of voltage responsivity is several volts per watt in the case of GaAs-based diodes (x = 0), and it substantially increases, reaching hundreds of volts per watt at higher x values. Also, a model enabling us to forecast the responsivity of the sensor in other frequency ranges is proposed.

20.
Nano Lett ; 20(7): 4939-4946, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543854

RESUMO

The bottom-up synthesis process often allows the growth of metastable phase nanowires instead of the thermodynamically stable phase. Herein, we synthesized Cd3As2 nanowires with a controlled three-dimensional Dirac semimetal phase using a chemical vapor transport method. Three different phases such as the body centered tetragonal (bct), and two metastable primitive tetragonal (P42/nbc and P42/nmc) phases were identified. The conversion between three phases (bct → P42/nbc → P42/nmc) was achieved by increasing the growth temperature. The growth direction is [110] for bct and P42/nbc and [100] for P42/nmc, corresponding to the same crystallographic axis. Field effect transistors and photodetector devices showed the nearly same electrical and photoelectrical properties for three phases. Differential conductance measurement confirms excellent electron mobility (2 × 104 cm2/(V s) at 10 K). Negative photoconductance was first observed, and the photoresponsivity reached 3 × 104 A/W, which is ascribed to the surface defects acting as trap sites for the photogenerated electrons.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa